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Abstract. For several NP-hard network design problems, the best known approximation algorithms
are remarkably simple randomized algorithms called Sample-Augment algorithms in [11]. The algo-
rithms draw a random sample from the input, solve a certain subproblem on the random sample, and
augment the solution for the subproblem to a solution for the original problem. We give a general frame-
work that allows us to derandomize most Sample-Augment algorithms, i.e. to specify a specific sample
for which the cost of the solution created by the Sample-Augment algorithm is at most a constant fac-
tor away from optimal. Our approach allows us to give deterministic versions of the Sample-Augment
algorithms for the connected facility location problem, in which the open facilities need to be connected
by either a tree or a tour, the virtual private network design problem, 2-stage rooted stochastic Steiner
tree problem with independent decisions, the a priori traveling salesman problem and the single sink
buy-at-bulk problem. This partially answers an open question posed in Gupta et al. [11].

1 Introduction

For several NP-hard network design problems, the best known approximation algorithms are remarkably
simple randomized algorithms. The algorithms draw a random sample from the input, solve a certain sub-
problem on the random sample, and augment the solution for the subproblem to a solution for the original
problem. Following [11], we will refer to this type of algorithm as a Sample-Augment algorithm. We give a
general framework that allows us to derandomize most Sample-Augment algorithms, i.e. to specify a specific
sample for which the cost of the solution created by the Sample-Augment algorithm is at most a constant
factor away from optimal. The derandomization of the Sample-Augment algorithm for the single source
rent-or-buy problem in Williamson and Van Zuylen [21] is a special case of our approach, but our approach
also extends to the Sample-Augment algorithms for the connected facility location problem, in which the
open facilities need to be connected by either a tree or a tour [3], the virtual private network design problem
[12, 11, 1, 2], 2-stage stochastic Steiner tree problem with independent decisions [13], the a priori traveling
salesman problem [18], and even the single sink buy-at-bulk problem [12, 11, 9], although for this we need to
further extend our framework.

Generally speaking, the problems we consider are network design problems: they feature an underlying
undirected graph G = (V,E) with edge costs ce ≥ 0 that satisfy the triangle inequality, and the algorithm
needs to make decisions such as on which edges to install how much capacity or at which vertices to open
facilities. The Sample-Augment algorithm proceeds by randomly marking a subset of the vertices, solving
some subproblem that is defined on the set of marked vertices, and then augmenting the solution for the
subproblem to a solution for the original problem. We defer definitions of the problems we consider, and
further discussions of the known results and Sample-Augment algorithms for them, to the relevant sections.
We refer the reader also to the paper by Gupta, Kumar, Pál and Ravi [11], which is the journal version of
the papers which first introduced Sample-Augment algorithms [12, 10].

As an example, in the single source rent-or-buy problem, we are given a source s ∈ V , a set of sinks
t1, . . . , tk ∈ V and a parameter M > 1. An edge e can either be rented for sink tj in which case we pay ce,
or it can be bought and used by any sink, in which case we pay Mce. The goal is to find a minimum cost
set of edges to buy and rent so that for each sink tj the bought edges plus the edges rented for tj contain
a path from tj to s. In the Sampling Step of the Sample-Augment algorithm in Gupta et al. [12, 11] we
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mark each sink independently with probability 1
M . Given the set of marked sinks D, the Subproblem Step

finds a Steiner tree on D ∪ {s} and buys the edges of this tree. In the Augmentation Step, the subproblem’s
solution is augmented to a feasible solution for the single source rent-or-buy problem by renting edges for
each unmarked sink tj to the closest vertex in D ∪ {s}.

To give a deterministic version of the Sample-Augment algorithm, we want to find a set D such that for
this set D the cost of the Subproblem Step plus the Augmentation Step is at most the expected cost of the
Sample-Augment problem. A natural approach is to try and use the method of conditional expectation [4] to
achieve this. However, in order to do this we would need to be able to compute the conditional expectation
of the cost of the Sample-Augment problem, conditioned on including / not including tj ∈ D. Unfortunately,
we do not know how to do this for any of the problems for which good Sample-Augment algorithms exist.

What we show is that we can find an upper bound on the cost of the Subproblem plus Augmentation
Steps that can be efficiently computed. Suppose we can show that the expectation of the upper bound
under the sampling strategy of the randomized Sample-Augment algorithm is at most βOPT , where OPT
is the optimal value and β > 1 is some constant. Then we can use this upper bound and the method of
conditional expectation to find a set D such that the upper bound on the cost of the Subproblem Step plus
the Augmentation Step is not more than the expected upper bound for the randomized Sample-Augment
algorithm, and hence at most βOPT as well.

Our upper bound on the cost of the Subproblem Step will be obtained from a particular feasible solution to
a linear programming (LP) relaxation of the subproblem. We then use well-known approximation algorithms
to obtain a solution to the subproblem that comes within a constant factor of the subproblem LP. We do
not need to solve the LP relaxation of the subproblem: instead we show that the optimal solution to an LP
relaxation of the original problem defines a set of feasible solutions to the subproblem’s LP relaxation. We
note that for some of the problems we consider, for example the virtual private network design problem, this
requires us to “discover” a new LP relaxation of the original problem.

Using this technique, we derive the best known deterministic approximation algorithms for the 2-stage
rooted stochastic Steiner tree problem with independent decisions, the a priori traveling salesman problem,
the connected facility location problem in which the open facilities need to be connected by a traveling
salesman tour, the virtual private network design problem and the single sink buy-at-bulk problem. We
thus partially answer an open question in Gupta et al. [11] (the only problem in [11] that we do not give
a deterministic algorithm for is the multicommodity rent-or-buy problem). In addition, our analysis implies
that the integrality gap of an (even more) natural LP relaxation than the one considered in [7, 20] for the
single-sink buy-at-bulk problem has integrality gap at most 27.72. We also match the best known bounds
for the single source rent-or-buy problem and the connected facility location problem in which open facilities
need to be connected by a tree, which were obtained by applying the techniques from Williamson and Van
Zuylen [21], which is a special case of our approach. We summarize our results in Table 1.

Problem randomized prev. best deterministic our result

SSRoB 2.92 [3] 4.2 [14], 3.28∗ [21, 3] 3.28
2-stage Steiner 3.55 [13] log n [16] 8
a priori TSP 4 [18], O(1)[6] 8∗ [18] 6.5
CFL-tree 4 [3] 8.29 [15], 4.23∗ [3] 4.23
k-CFL-tree 6.85 [3] 6.98∗ [3] 6.98
CFL-tour 4.12 [3] - 4.12
VPND 3.55 [2] log n [5] 8.02
SSBaB 24.92 [9] 216 [20] 27.72

Table 1. The first column contains the best known approximation guarantees for the problems, which are obtained by
randomized Sample-Augment algorithms. The second column gives the previous best known approximation guarantee
by a deterministic algorithm. Entries marked with ∗ are obtained by using the method in Williamson and Van Zuylen
[21], which is a special case of our approach. The third column shows the approximation guarantees in this paper.

We remark that our method is related to the method of pessimistic estimators of Raghavan [17]: Raghavan
also uses an efficiently computable upper bound in combination with the method of conditional expectation
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to derandomize a randomized algorithm, where he first proves that the expected “cost” of the randomized
algorithm is small. (We note that in the problem he considers, the cost of the algorithm is either 0 (the
solution is “good”) or 1 (the solution is “bad”)). However, in Raghavan’s work the probabilities in the
randomized algorithm depend on a solution to a linear program, but the upper bounds are obtained by a
Chernoff-type bound. In our work, the probabilities in the randomized algorithm are already known from
previous works, but we demonstrate upper bounds on the conditional expectations that depend on linear
programming relaxations.

In the next section, we will give a general description of a Sample-Augment algorithm, and give a set of
conditions under which we can give a deterministic variant of a Sample-Augment algorithm. In Section 3 we
illustrate our method using the single source rent-or-buy problem as an example. In Sections 4, 5, 6, 7 and
8 we sketch how to obtain deterministic versions of the Sample-Augment algorithms for the 2-stage rooted
stochastic Steiner tree with independent decisions, the a priori traveling salesman problem, connected facility
location problems, the virtual private network design problem and the single sink buy-at-bulk problem. We
conclude with a brief discussion of some future directions in Section 9.

2 Derandomization of Sample-Augment Algorithms

We give a high-level description of a class of algorithms first introduced by Gupta, Kumar and Roughgarden
[12], which were called Sample-Augment algorithms in [11]. Given a (minimization) problem P, the Sample-
Augment problem is defined by

(i) a set of elements D = {1, . . . , n} and sampling probabilities p = (p1, . . . , pn),
(ii) a subproblem Psub(D) defined for any D ⊂ D, and
(ii) an augmentation problem Paug(D, SolSub(D)) defined for any D ⊂ D and solution Solsub(D) to Psub(D).

The Sample-Augment algorithm samples from D independently according to the sampling probabilities p,
solves the subproblem and augmentation problem for the random subset, and returns the union of the
solutions given by the subproblem and augmentation problem. We give a general statement of the Sample-
Augment algorithm.

P-Sample-Augment(D, p,PSub,Paug)

1. (Sampling Step) Mark each element j ∈ D independently with probability pj . Let D be the set of
marked elements.

2. (Subproblem Step) Solve Psub on D. Let Solsub(D) be the solution found.
3. (Augmentation Step) Solve Paug on D, Solsub(D). Let Solaug(D, Solsub(D)) be the solution found.
4. Return Solsub(D) and Solaug(D, Solsub(D)).

We remark that we will consider Sample-Augment algorithms, in which the Augmentation Step only depends
on D, and not on Solsub(D).

In the following, we let OPT denote the optimal value of the problem we are considering. Let Csub(D)
be the cost of Solsub(D), and let Caug(D) be the cost of Solaug(D, Solsub(D)). Let CSA(D) = Csub(D) +
Caug(D). We will use blackboard bold characters to denote random sets. For a function C(D), let Ep

[
C(D)

]
be the expectation of C(D) if D is obtained by including each j ∈ D in D independently with probability pj .

Note that, since the elements are included in D independently, the conditional expectation of Ep

[
CSA(D)

]
given that j is included in D is Ep,pj←1

[
CSA(D)

]
, and the conditional expectation, given that j is not included

in D is Ep,pj←0

[
CSA(D)

]
. By the method of conditional expectation [4], one of these conditional expectations

has value at most Ep

[
CSA(D)

]
. Hence if we could compute the expectations for different vectors of sampling

probabilities, we could iterate through the elements and transform p into a binary vector (corresponding to
a deterministic set D) without increasing Ep

[
CSA(D)

]
.

Unfortunately, this is not very useful to us yet, since it is generally not the case that we can compute
Ep

[
CSA(D)

]
. However, as we will show, for many problems and corresponding Sample-Augment algorithms,

it is the case that Ep

[
Caug(D)

]
can be efficiently computed for any vector of probabilities p, and does not
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depend on the solution Solsub(D) for the subproblem, but only on the set D. The expected cost of the
subproblem’s solution is more difficult to compute. What we therefore do instead is replace the cost of
the subproblem by an upper bound on its cost: Suppose there exists a function Usub : 2D → R such that
Csub(D) ≤ Usub(D) for any D ⊂ D, and suppose we can efficiently compute Ep

[
Usub(D)

]
and Ep

[
Caug(D)

]
for any vector p. If there exists some vector p̂ such that

Ep̂

�
Usub(D)

�
+ Ep̂

�
Caug(D)

�
≤ βOPT (1)

then we can use the method of conditional expectation to find a set D such that Usub(D)+Caug(D) ≤ βOPT ,
and hence also Csub(D) + Caug(D) ≤ βOPT .

Theorem 1. Given a minimization problem P and an algorithm P-Sample-Augment, suppose the following
four conditions hold:

(i) Ep

[
Caug(D)

]
depends only on D, not on Solsub(D), and can be efficiently computed for any p.

(ii) There exists an LP relaxation Sub-LP(D) of Psub(D) and an algorithm for Psub(D) that is guaranteed
to output a solution to Psub(D) that costs at most a factor α times the cost of any feasible solution to
Sub-LP(D).

(iii) There exist known vectors b and r(j) for j = 1, . . . , n such that y(D) = b +
∑

j∈D r(j) is a feasible
solution to Sub-LP(D) for any D ⊂ D.

(iv) There exists a vector p̂ such that

Ep̂

�
Caug(D)

�
+ αEp̂

�
CLP (y(D))

�
≤ βOPT,

where CLP (y(D)) is the objective value of y(D) for Sub-LP(D).

Then there exists a deterministic β-approximation algorithm for P.

Proof. Let Usub(D) = αCLP (y(D)). If we use the algorithm from (ii) in the Subproblem Step of P-Sample-
Augment, then by (ii), Csub(D) ≤ Usub(D). By (iii) Ep

[
Usub(D)

]
can be efficiently computed for any p, and

by (iv) Equation (1) is satisfied. Hence we can use the method of conditional expectation to find a set D
such that Csub(D) + Caug(D) ≤ Usub(D) + Caug(D) ≤ βOPT . ut

In many cases, (i) is easily verified. In the problems we are considering here, the subproblem looks for a
Steiner tree or a traveling salesman tour, so that there are well-known LP relaxations and algorithms such
that α = 2 if the subproblem is a Steiner tree problem [8], and α = 1.5 if the subproblem is a traveling sales-
man tour problem [22, 19]. The solution y(D) = b +

∑
j∈D r(j) will be defined by using the optimal solution

to an LP relaxation of the original problem, so that for appropriately chosen probabilities Ep̂

[
CLP (y(D))

]
is bounded by a constant factor times OPT . Using the analysis for the randomized algorithm to bound
Ep̂

[
Caug(D)

]
, we can then show that (iv) holds.

Remark. In some cases, Psub and Paug are only defined for D 6= ∅. In such cases, we require that condition
(i) holds for all p such that pj = 1 for some j, and that condition (ii) holds for non-empty subsets D.
Condition (iv) then asks for p̂ such that p̂j = 1 for some j. The derandomization procedure will not change
this element, so that the Sample-Augment algorithm is always well defined for the vectors p that we consider.

3 Single Source Rent-or-Buy

We illustrate Theorem 1 by showing how it can be used to give a deterministic algorithm for the single source
rent-or-buy problem. We note that this was already done in [21]; however, we repeat this here because this
is arguably the simplest application of Theorem 1 and hence provides a nice illustration of the more general
approach.

In the single source rent-or-buy problem, we are given an undirected graph G = (V,E), edge costs ce ≥ 0
for e ∈ E, a source s ∈ V and a set of sinks t1, . . . , tk ∈ V , and a parameter M > 1. A solution is a set of
edges B to buy, and for each sink tj a set of edges Rj to rent, so that B∪Rj contains a path from t to tj . The
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cost of renting an edge e is ce and the cost of buying e is Mce. For a set T ⊆ E, we denote by c(T ) =
∑

e∈T ce,
hence the cost of solution (B,R1, . . . , Rk) is Mc(B) +

∑k
j=1 c(Rj). For u, v ∈ V , we denote by `(u, v) the

lenght of the shortest path from u to v with respect to costs c, and we let `(u, F ) = minv∈F `(u, v).
Gupta, Kumar, and Roughgarden [12] propose the random sampling algorithm given below, where they

set pj = 1
M for all j = 1, . . . , k.

SSRoB-Sample-Augment(G = (V,E), c, s, {t1, . . . , tk}, p)

1. (Sampling Step) Mark each sink tj with probability pj . Let D be the set of marked sinks.
2. (Subproblem Step) Construct a Steiner tree on D ∪ {s} and buy the edges of the tree.
3. (Augmentation Step) Rent the shortest path from each unmarked sink to the closest terminal in D∪{s}.

Note that the expected cost of the Augmentation Step of SSRoB-Sample-Augment does not depend on
the tree bought in the Subproblem Step. Gupta et al. [12] show that if each sink is marked independently
with probability 1

M then the expected cost of the Augmentation Step can be bounded by 2OPT .

Lemma 2 ([12]). If pj = 1
M for j = 1, . . . , k, then E

[
Caug(D)

]
≤ 2OPT .

Lemma 3 ([21]). There exists a deterministic 4-approximation algorithm for SSRoB.

Proof. We verify that the four conditions of Theorem 1 hold. It is straightforward to show that Ep

[
Caug(D)

]
,

the expected cost incurred in the Augmentation Step, can be computed for any vector of sampling probabil-
ities p. Now consider the subproblem on a given subset D of {t1, . . . , tk}. From Goemans and Bertsimas [8]
we know that we can efficiently find a Steiner tree on D ∪ {s} of cost at most twice the optimal value (and
hence the objective value of any feasible solution) of the following Sub-LP:

min
X
e∈E

Mceye

(Sub-LP(D)) s.t.
X

e∈δ(S)

ye ≥ 1 ∀S ⊂ V : s 6∈ S, D ∩ S 6= ∅

ye ≥ 0 ∀e ∈ E

We now want to define a feasible solution y(D) to Sub-LP(D) for any D ⊂ D, such that y(D) can be written
as b +

∑
tj∈D r(j), since this form will allow us to efficiently compute Ep

[
CLP (y(D))

]
. To do this, we use an

LP relaxation of the single source rent-or-buy problem. Let be be a variable that indicates whether we buy
edge e, and let rj

e indicate whether we rent edge e for sink tj .

min
X
e∈E

Mcebe +
X
e∈E

kX
j=1

cer
j
e

(SSRoB-LP) s.t.
X

e∈δ(S)

(be + rj
e) ≥ 1 ∀S ⊂ V : tj ∈ S, s 6∈ S

be, r
j
e ≥ 0 ∀e ∈ E, j = 1, . . . , k

SSRoB-LP is a relaxation of the single source rent-or-buy problem, since the optimal solution to the single
source rent-or-buy problem is feasible for SSRoB-LP and has objective value OPT . Let b̂, r̂ be an optimal
solution to SSRoB-LP. For a given set D ⊂ D and edge e ∈ E we let

ye(D) = b̂e +
X

tj∈D

r̂j
e.

Clearly, y(D) is a feasible solution to Sub-LP(D) for any D.
Finally, we show the existence of a vector p̂ such that Ep̂

[
Caug(D)

]
+ 2Ep̂

[
CLP (y(D))

]
≤ 4OPT . Let

p̂j = 1
M for every tj ∈ D. Then by Lemma 2, the expected cost of the Augmentation Step is at most 2OPT ,

and 2Ep̂

[
CLP (y(D))

]
is

2
X
e∈E

Mce

�
b̂e +

kX
j=1

1

M
r̂j

e

�
≤ 2OPT.

Hence, applying Theorem 1, we get that there exists a 4-approximation algorithm for SSRoB. ut
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We note that it was shown in [21] that a better deterministic approximation algorithm exists, by using
the improved analysis of the randomized algorithm given by Eisenbrand et al. [3], which allows us to more
carefully balance the charge against the optimal renting and the optimal buying costs. We refer the reader
to [21] for the details.

Lemma 4 ([21, 3]). There exists a deterministic 3.28-approximation algorithm for the single source rent-
or-buy problem.

4 2-Stage Rooted Stochastic Steiner Tree with Independent Decisions

The input of the 2-stage rooted stochastic Steiner tree problem with independent decisions consists of a
graph G = (V,E) with edge costs ce ≥ 0, a root s and terminals t1, . . . , tk with activation probabilities
q1, . . . , qk and a parameter σ > 1. A solution can be constructed in two stages. In the first stage we do not
know which terminals need to be connected to the root, and we can install edges at cost ce. In the second
stage, we do know which terminals need to connect to the root (we will call these active) and we can install
edges at cost σce. Each terminal tj is active independently with probability qj .

The Boosted Sampling algorithm proposed in [13] is very similar to the SSRoB-Sample-Augment al-
gorithm. We first sample from the terminals, where terminal tj is chosen independently with probability
min{1, σqj}. Let D be the set of terminals selected. The first stage solution is a Steiner tree on D ∪ {s}.
In the second stage, we augment the first stage solution by adding shortest paths from each active terminal
to the closest terminal in D ∪ {s}. We are interested in the expected cost of the algorithm’s solution, and
hence we can replace the Augmentation Step by adding shortest path from each terminal tj to the closest
terminal in D∪{s} with edge costs σqjce as this gives the same expected cost. Hence the Boosted Sampling
algorithm for 2-stage rooted stochastic Steiner tree problem with independent decisions is the same as the
SSRoB-Sample-Augment algorithm with M = 1, except that in the Augmentation Step, the renting cost for
renting edge e for terminal j is σqjce.

It is clear that condition (i) of Theorem 1 is again met. For condition (ii) we can use the same Sub-LP
as in the previous section (with M = 1), and we again have α = 2. Now, we need a good LP relaxation to
define the solutions y(D) to the Sub-LP. We claim that the optimal value of the following LP is at most
OPT .

min
1

3

X
e∈E

�
cebe +

kX
j=1

σqjcer
j
e

�

(2-stage-LP) s.t.
X

e∈δ(S)

(be + rj
e) ≥ 1 ∀S ⊂ V : s 6∈ S, tj ∈ S

be, r
j
e ≥ 0 ∀e ∈ E, j = 1, . . . , k

Suppose we could find the optimal Steiner tree on D ∪{s} in the Subproblem Step of the Boosted Sampling
algorithm. Then Gupta et al. [11] show that the expected cost of the first stage solution is at most OPT ,
if the sampling probabilities are min{1, qjσ}. In addition, they show that the expected cost of the second
stage is at most 2OPT . Hence there exists some sample D such that the cost of the optimal Steiner tree on
D ∪ {s} plus the cost of the Augmentation Step is at most 3OPT . Letting be = 1 for the first stage edges
in this solution, and rj

e = 1 for the second stage edges, thus gives a solution to 2-stage-LP of cost at most
OPT .

Given an optimal solution b̂, r̂ to 2-stage-LP, we define ye(D) = b̂e +
∑

tj∈D r̂j
e as before, and taking

p̂j = qj , we find that

2Ep̂

�
CLP (y(D))

�
= 2

X
e∈E

�
cebe +

kX
j=1

σqjcer
j
e

�
≤ 6OPT.

Combining this with Gupta et al. [11]’s result that under these sampling probabilities, Ep̂

[
CLP (y(D))

]
≤

2OPT , Theorem 1 allows us to get the following result.

Lemma 5. There exists a deterministic 8-approximation algorithm for the 2-stage rooted stochastic Steiner
tree problem with independent decisions.
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5 A Priori Traveling Salesman Problem with Independent Decisions

In the a priori traveling salesman problem with independent decisions, we are given a graph G = (V,E) with
edge costs ce ≥ 0 and a set of terminals t1, . . . , tk, where terminal tj is active independently of the other
terminals with probability qj . The goal is to find a so-called master tour on the set of all terminals, such
that the expected cost of shortcutting the master tour to the set of active terminals is minimized.

Shmoys and Talwar [18] recently showed that a Sample-Augment type algorithm for this problem is a
4-approximation algorithm. In the Sampling Step, they randomly mark the terminals, where each terminal tj
is marked independently with probability pj = qj . (If there is no tj such that qj = 1, then they need a revised
Sampling Step to ensure at least one terminal is marked. We omit the details here.) In the Subproblem Step
they find a tour on the marked terminals and finally, in the Augmentation Step they add two copies of the
shortest path from each unmarked terminal to the closest marked terminal.

It is not hard to see that if at least one terminal is marked, then the Sample-Augment algorithm finds
an Euler tour on the terminals, and we can shortcut the Euler tour to give the traveling salesman tour that
will be the master tour.

To evaluate the expected cost of the shortcut tour on a set of active terminals A, Shmoys and Talwar
upper bound the cost of shortcutting the master tour on A by assuming that for any S of size at least 2 we
always traverse the edges found in the Subproblem Step, and we traverse the edges found in the Augmentation
Step only for the active terminals. If |A| < 2, then the cost of the shortcut master tour is 0.

Since we are interested in an upper bounding the expected cost of the shortcut tour, we can just consider
the expectation of this upper bound. Let Q be the probability that at least 2 terminals are active, and
let q̃j be the probability that tj is active conditioned on the fact that at least 2 terminals are active, i.e.

q̃j =
qj(1−

Q
i6=j(1−qi))

Q . The expected cost for an edge e in the tour constructed by the Subproblem Step is
Qce and the expected cost for an edge e that is added for terminal j in the Augmentation Step is q̃jce.

Hence we can instead analyze the algorithm APTSP-Sample-Augment given below. We note that the
vector of sampling probabilities must have at least one element set to 1, otherwise the Augmentation Step may
not be well defined. We will therefore make sure that the vector p̂ with which we start the derandomization
of APTSP-Sample-Augment has at least one element equal to 1 (in fact, it will have two elements set to 1).

APTSP-Sample-Augment(G = (V,E), c, Q, q̃, s, {t1, . . . , tk}, p)

1. (Sampling Step) Mark each terminal tj with probability pj . Let D be the set of marked terminals.
2. (Subproblem Step) Construct a traveling salesman tour on D, and pay Qce for each edge on the tour.
3. (Augmentation Step) Add two copies of the shortest path from each unmarked terminal tj to the closest

terminal in D and incur cost q̃jce for each edge.

Shmoys and Talwar [18] show that if p̃j = qj for every terminal, and if we were able to find a minimum
cost solution to the subproblem, then Ep̃

[
Csub(D)

∣∣|D| ≥ 2
]
≤ OPT , and Ep̃

[
Caug(D)

∣∣|D| ≥ 2
]
≤ 2OPT .

This implies that there is some non-empty set D∗ such that Csub(D∗)+Caug(D∗) ≤ 3OPT . Let t∗ be one
of the terminals in D∗, and set be = 1 for each of the edges in the (minimum cost) subproblem’s solution on
D∗, and let rj

e = 1 for the edges added for terminal j in the Augmentation Step. Then b, r defines a feasible
solution to the following LP with objective value at most OPT and hence APTSP-LP is an LP relaxation
of the a priori Traveling Salesman Problem.

min
1

3

X
e∈E

(Qcebe +

kX
j=1

q̃jcer
j
e

�

(APTSP-LP) s.t.
X

e∈δ(S)

(be + rj
e) ≥ 2 ∀S ⊂ V : t∗ 6∈ S, tj ∈ S

be, r
j
e ≥ 0 ∀e ∈ E, j = 1, . . . , k

Note that we do not know t∗, but we can solve APTSP-LP for any t∗ ∈ {t1, . . . , tk} and use the LP with the
smallest objective value. Let b̂, r̂ be an optimal solution to that LP.
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We let the Sub-LP on D be

min
X
e∈E

Qceye

(Sub-LP(D)) s.t.
X

e∈δ(S)

ye ≥ 2 ∀S ⊂ V : D\S 6= ∅, D ∩ S 6= ∅

ye ≥ 0 ∀e ∈ E

Note that this satisfies condition (ii) in Theorem 1 with α = 1.5 by [22, 19]. To define solutions y(D) to
Sub-LP(D), we let ye(D) = b̂e +

∑
tj∈D r̂j

e.

We now let p̃j = qj and consider the expectation of Ep̃

[
CLP (y(D))

∣∣|D| ≥ 2
]

and Ep̃

[
Caug(D)

∣∣|D| ≥ 2
]
.

From Shmoys and Talwar we know that the second term is at most 2OPT . Also, since the probability that
tj is in D conditioned on D having at least 2 elements is q̃j , we get

1.5Ep̃

�
CLP (y(D))

��|D| ≥ 2
�

= 1.5
�X

e∈E

Qceb̂e +

kX
j=1

Qq̃jcer̂
j
e

�
= 1.5

X
e∈E

�
Qceb̂e +

kX
j=1

qj(1−
Y
i6=j

(1− qi))cer̂
j
e

�

≤ 1.5
X
e∈E

�
Qceb̂e +

kX
j=1

qjcer̂
j
e

�
≤ 4.5OPT (2)

where the last inequality holds since we showed that APTSP-LP is a relaxation of the a priori Traveling
Salesman Problem.

Finally, we want to get rid of the conditioning on |D| ≥ 2. By conditioning on the two smallest indices
in D and then using basic properties of conditional expectation, one can show that there must exist two
elements, say j1 < j2 such that if we let p̂j1 = p̂j2 = 1, p̂j = 0 for all j < j2 and p̂j = qj for all j > j2, then

1.5Ep̂

�
CLP (y(D))

�
+ Ep̂

�
Caug(D)

�
≤ 1.5Ep̃

�
CLP (y(D))

��|D| ≥ 2
�
+ Ep̃

�
Caug(D)

��|D| ≥ 2
�
.

Hence we can try all possible choices of j1, j2, and we will find p̂ with at least two elements equal to 1, so
that condition (iv) of Theorem 1 holds with β = 6.5. Hence we get the following result.

Lemma 6. There exists a deterministic 6.5-approximation algorithm for a priori Traveling Salesman Prob-
lem.

Remark. Shmoys and Talwar [18] use the Steiner tree LP as the Sub-LP. Since we can get a traveling
salesman tour of cost at most twice the cost of a Steiner tree, α = 4. They show that αEp̃

[
CLP (y(D))

∣∣|D| ≥
2
]
≤ 6OPT , instead of what we find in (2), and thus get an 8-approximation algorithm.

6 Connected Facility Location Problems.

The connected facility location problems that we consider have the following form. We are given an undirected
graph G = (V,E) with edge costs ce ≥ 0 for e ∈ E, a set of clients D ⊂ V with demands dj for j ∈ D,
a set of potential facilities F ⊂ V , with opening cost fi ≥ 0 for i ∈ F , a connectivity requirement CR ∈
{Tour, SteinerTree} a parameter M > 1, and a parameter k > 1. We assume that the edges costs satisfy
the triangle inequality. The goal is to find a subset of facilities F ⊆ F to open such that |F | ≤ k (k may be
∞) and a set of edges T so that T is a CR on F that minimizes

X
i∈F

fi + Mc(T ) +
X
j∈D

`(j, F ).

We will say that we buy the edges of the set T that connect the open facilities, and that we rent the edges
connecting each client to their closest open facility.

We may assume without loss of generality that dj = 1 for all j ∈ D; see [12] for details. In the following,
we denote by ρcr = 1 if CR = SteinerTree and ρcr = 2 if CR = Tour, which basically indicates the
requirement that two open facilities need to be connected by ρcr distinct paths.
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To determine which facilities to open, the Sample-Augment algorithm from Eisenbrand, Grandoni,
Rothvoß and Schäfer [3] marks each client j ∈ D independently with probability pj and opens the facil-
ities that the marked clients are assigned to in an (approximately optimal) solution to the corresponding
unconnected facility location problem. Of course, any feasible solution must have at least 1 open facility,
hence we need to mark at least one client. To achieve this, Eisenbrand et al. first mark one client chosen
uniformly at random. In our description of the Sample-Augment algorithm we omit this, but in our deran-
domization, we will make sure that the vector p̂ in condition (iv) of Theorem 1 has at least one element
equal to 1. CFL-Sample-Augment gives our version of the algorithm from Eisenbrand et al. [3]:

CFL-Sample-Augment(G = (V,E), c,D,F , f, k,M,CR)

1. (Sampling Step) Mark every client j in D independently at random with probability pj . Let D be the
set of marked clients.

2. (Subproblem Step) Construct a CR solution on the set D. Buy the edges of this solution.
3. (Augmentation Step)

Compute an (approximately optimal) solution to the corresponding unconnected k-facility location
problem. Let FU be the facilities opened, and for j ∈ D let σU (j) be the facility j is assigned to. Let
F =

⋃
j∈D σU (j), and open the facilities in F .

Rent the edges from each client j ∈ D to their closest open facility, and, in addition to the edges bought
in Step 2, buy ρcr copies of the edges on the shortest path from each client j in D to its closest facility
in F .

It can be verified that condition (i) of Theorem 1 is satisfied for any sampling probabilities p such that
pj = 1 for some j. We define Sub-LP(D) as

min
X
e∈E

Mceye

(Sub-LP(D)) s.t.
X

e∈δ(S)

ye ≥ ρcr ∀S ⊂ V : D\S 6= ∅, D ∩ S 6= ∅

ye ≥ 0 ∀e ∈ E

Condition (ii) of Theorem 1 is satisfied with α = 2 if CR = SteinerTree [8], or 1.5 if CR = Tour [22, 19].
Let λ = a + M

|D| , where a is a parameter to be determined later. We assume we know that facility i∗ is
open in the optimal solution. (We can drop this assumption by taking i∗ to be the facility for which the
following LP gives the lowest optimal value). We use the following LP to define the Sub-LP solutions. We
note that this is almost an LP relaxation of the connected facility location problem, except for the weighing
of the renting cost by λ.

min
X
e∈E

Mcebe + λρcr

X
j∈D

X
e∈E

cer
j
e

(CFL-LP) s.t.
X

e∈δ(S)

(be + ρcrr
j
e) ≥ ρcr ∀S ⊂ V, i∗ 6∈ S, j ∈ D ∩ S

rj
e, be ≥ 0 ∀e ∈ E, j ∈ D

Let b̂, r̂ be an optimal solution to CFL-LP. Given an optimal solution to the original problem, let B∗, R∗ be
the total buying and renting cost. It is easily verified that the optimal value of CFL-LP is at most B∗+λR∗.
We define ye(D) = b̂e + ρcr

∑
j∈D r̂j

e.
Now, if we mark one client chosen uniformly at random, and then mark each client with probability a

M
as in Eisenbrand et al. [3], then the probability that j is marked is at most a

M + 1
|D| , hence E

[
CLP (y(D))

]
≤

B∗ + λρcrR
∗. Combined with the bounds given by Eisenbrand et al. on E

[
Caug(D)

]
under this sampling

strategy, we can show that E
[
Caug(D)

]
+ αE

[
CLP (y(D))

]
≤ β(a)OPT , where β(a) depends on the variant

of the problem we are considering. The details are left for the full version of this paper.
Finally, we only need to remark that by the definition of expectation, there must then also exist some

vector p̂, such that p̂j = 1 for some j and p̂j′ = a
M for all other j′ such that Ep̂

[
Caug(D)

]
+αEp̂

[
CLP (y(D))

]
≤

β(a)OPT . Choosing a appropriately and invoking Theorem 1 then gives the following results.
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Lemma 7 ([3]). There exists a deterministic 4.23-approximation algorithm for k-connected facility location
with k = ∞ and CR = SteinerTree.

Lemma 8 ([3]). There exists a deterministic 6.98-approximation algorithm for k-connected facility location
with k < ∞ and CR = SteinerTree.

Lemma 9. There exists a deterministic 4.12-approximation algorithm for k-connected facility location with
k = ∞ and CR = Tour.

7 Virtual Private Network Design.

In the virtual private network design problem, we are given a graph G = (V,E) with edge cost ce ≥ 0, and a
set of demands D ⊆ V . Each demand j ∈ D has thresholds bin(j), bout(j) on the amount of traffic that can
enter and leave j.

A feasible solution is a set of paths Pij for every ordered pair i, j ∈ D and capacity ue on the edges so
that there is sufficient capacity for any traffic pattern {fij}i,j∈D: For any {fij}i,j∈D such that

∑
i fij ≤ bin(j)

and
∑

i fji ≤ bout(j) for every j ∈ D we need to have sufficient capacity on the paths, i.e.
∑

ij:e∈Pij
fij ≤ ue

for every e ∈ E. The objective is to find a solution that minimizes the cost
∑

e∈E ceue of installing capacity.
Gupta, Kumar, and Roughgarden [12] proposed a random sampling algorithm for the virtual private

network design problem that is very similar to the algorithm for single source rent-or-buy. The algorithm
and analysis were improved by Eisenbrand and Grandoni [1] and Eisenbrand, Grandoni, Oriolo and Skutella
[2]. We will show how Theorem 1 can be used to derandomize the improved algorithm in [2].

As was shown by Gupta et al. [12], we assume without loss of generality that each j ∈ D is either a
sender (bin(j) = 0, bout(j) = 1) or a receiver (bin(j) = 1, bout(j) = 0). Let J be the set of receivers, and I
be the set of senders. By symmetry, we assume without loss of generality that |I| ≤ |J |.

The algorithm as described by Eisenbrand et al. [2] partitions J into I groups, and chooses one non-
empty group, say D, at random. In the Subproblem Step, we add one unit of capacity on a Steiner tree
spanning {i} ∪D for each sender i, and finally, in the Augmentation Step we install one unit of capacity on
the shortest path from each receiver j to the closest receiver in D. For our derandomization, we just assume
we mark each receiver with some probability pj . We will ensure that we only consider sampling probabilities
so that at least one pj will be 1, since otherwise the Augmentation Step is not well-defined.

The VPN-Sample-Augment algorithm is described below. The algorithm installs the capacities and out-
puts the Steiner trees found in the Subproblem Step. If j′ is the receiver in D that is closest to j, then Pij

is obtained by concatenating the unique path from j′ to i in T (i) and the shortest path from j to j′.

VPN-Sample-Augment(G = (V,E), c,J , I, p)

1. (Sampling Step) Mark each receiver j independently with probability pj . Let D be the set of marked
receivers.

2. (Subproblem Step) For each sender i ∈ I, construct a Steiner tree T (i) on D ∪ {i} and add one unit of
capacity to each edge of T (i).

3. (Augmentation Step) Install one unit of capacity on the shortest path from each receiver j ∈ J to the
closest receiver in D.

Eisenbrand et al. [2] also show that there exists a (deterministic) (1+ |J ||I| ) approximation algorithm. Using
Theorem 1 and the ideas from Section 5 we can show that if |J | ≥ 7|I|, then there exists a deterministic
8.02-approximation algorithm.

Lemma 10. There exists a deterministic 8.02-approximation algorithm for virtual private network design.
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Proof. (sketch) It is easily verified that condition (i) of Theorem 1 holds for all p with pj = 1 for some j.
The Sub-LP for condition (ii) is made up of |I| different Steiner tree LPs, and has α = 2 [8]:

min
X
e∈E

X
i∈I

cey
i
e

Sub-LP(D) s.t.
X

e∈δ(S)

yi
e ≥ 1 ∀i ∈ I,∀S ⊂ V : i ∈ S, D ∩ S 6= ∅

yi
e ≥ 0 ∀i ∈ I, e ∈ E

Let κ = 1− e−
|J |
|I| . It follows from the analysis of Eisenbrand et al. [2] that the following LP is a relaxation

of the virtual private network design problem:

min
κ

3

X
e∈E

ce

�X
i∈I

bi
e +

X
j∈J

rj
e

�

(VPN-LP) s.t.
X

e∈δ(S)

(bi
e + rj

e) ≥ 1 ∀S ⊂ V : i ∈ S ∩ I, j ∈ J \S

rj
e, b

i
e ≥ 0 ∀e ∈ E, j ∈ J , i ∈ I

Given an algorithm that finds minimum cost Steiner trees in the Subproblem Step, the expected cost of the
solution constructed by Eisenbrand et al.[2] is at most 3

κOPT . Hence there is some non-empty subset D for
which the cost is at most 3

κOPT . We let bi
e = 1 for the edges added in the Subproblem Step, and rj

e = 1
for the edges added in the Augmentation Step. This defines a feasible solution to VPN-LP of cost at most
OPT .

Let r̂, b̂ be an optimal solution to VPN-LP, then we can let yi
e(D) = b̂i

e +
∑

j∈D r̂j
e.

By letting p̂j = 1
|I| we can then show by borrowing from the analysis in [2] that

Ep̂

�
Caug(D)

��D 6= ∅
�
+ 2Ep̂

�
CLP (y(D))

��D 6= ∅
�
≤ 2 + 2× 3/κ

κ

Hence there exists some p̃ with one element equal to 1 and the rest equal to 1
|I| , for which Ep̃

[
Caug(D)

]
+

Ep̃

[
CLP (y(D))

]
≤ 2+6/κ

κ . Since |J | ≥ 7|I|, the right hand side is at most 8.02. ut

8 Single-Sink Buy-at-Bulk Network Design.

The single sink buy-at-bulk problem is a generalization of the single source rent-or-buy problem. We are
again given an undirected graph G = (V,E), edge costs ce ≥ 0 for e ∈ E, a sink t ∈ V and a set of sources
s1, . . . , sn ∈ V with weight wj > 0 for source sj . We denote {s1, . . . , sn} = S. In addition, there are K
cable types, where the k-th cable type has capacity uk and cost σk per unit length. The goal is to install
sufficient capacity at minimum cost so that we can send wj units from sj to t simultaneously. The single
source rent-or-buy problem is the special case where K = 2 and u1 = 1, u2 = ∞ and σ1 = 1, σ2 = M .

After a preprocessing step, the Sample-Augment algorithm proposed by Gupta et al. [12, 11] proceeds in
stages, where in the k-th stage, it will install cables of type k and k +1. At the beginning of stage k, enough
capacity has already been installed to move the weights through the cables and gather the weights into a
subset of the sources, so that each source has weight either 0 or uk.

We defer the discussion of the Sample-Augment algorithm and its derandomization using Theorem 1 to
the full version of this paper. We remark here only that we need more machinery to tackle this problem, since
the decisions in stage k change the input to subsequent stages. However, we show that we can use similar ideas
to upper bound the expected cost of future stages, and that this upper bound can be efficiently computed
for any decisions made in the current stage. We can thus derandomize the Sample-Augment algorithm from
Gupta et al. [12, 11] and obtain a deterministic 80-approximation algorithm. Using the improved Sample-
Augment algorithm by Grandoni and Italiano [9], we obtain the following result.

Lemma 11. There exists a deterministic 27.72-approximation algorithm for single sink buy-at-bulk.
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9 Conclusion

We propose a specific method for derandomizing Sample-Augment algorithms, and we successfully apply this
method to all but one of the Sample-Augment algorithms in Gupta et al. [11], and to the a priori traveling
salesman problem and the 2-stage rooted stochastic Steiner tree problem with independent decisions. The
question whether the Sample-Augment algorithm for multicommodity rent-or-buy problem can be deran-
domized remains open. If we want to use Theorem 1, we would need to be able to compute Ep

[
Caug(D)

]
(or

a good upper bound for it) efficiently and it is unclear how to do this for the multicommodity rent-or-buy
algorithm, because unlike in the algorithms we discussed, Ep

[
Caug(D)

]
does depend on the subproblem solu-

tion, and not just on D. It may also be possible to extend our approach to the Boosted Sampling algorithms
for stochastic optimization problems [13], but here again it is not obvious how to determine Ep

[
Caug(D)

]
.
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