
An improved monotone algorithm for scheduling related
machines with precedence constraints

Anke van Zuylen∗

Max Planck Institute for Informatics, Saarbrücken, Germany

Abstract

We answer an open question posed by Krumke, Schwahn, van Stee and Westphal
by showing how to turn the algorithm by Chekuri and Bender for scheduling
related machines with precedence constraints into a O(logm)-approximation
algorithm that is monotone in expectation. This significantly improves on the
previously best known monotone approximation algorithms for this problem,
by Krumke et al. and Thielen and Krumke, which have an approximation
guarantee of O(m2/3).

Key words: Scheduling, algorithmic mechanism design, precedence
constraints, monotone algorithms

∗Corresponding author. Max Planck Insitute for Informatics, Campus E 1 4, 66123 Saar-
brcken, Germany

Email address: anke@mpi-inf.mpg.de

Preprint submitted to Elsevier July 28, 2011

1. Introduction

In this paper we consider the problem of scheduling jobs on related machines
when the machines are controlled by selfish agents.

The classical version of the problem, in which the machines are not con-
trolled by selfish agents, is called Q|prec|Cmax in the notation introduced by
Graham, Lawler, Lenstra and Rinnooy Kan [4]. We are given a set of n jobs
with processing times p1, . . . , pn, precedence constraints on the jobs in the form
of a partial order, and m machines with speeds s1, . . . , sm. If job j is processed
on machine i, it takes pj/si time units to process. A schedule is an assignment
of jobs to machines, plus a starting time for each job, so that a job starts after
all jobs that must precede it have been processed, and a machine works on only
one job at a time. The goal is to minimize the makespan of the schedule, i.e.
the finishing time of the last job.

Motivated by applications on the Internet, in recent years researchers have
considered scheduling problems in which the machines are controlled by selfish
agents. In our setting, this means that we do not know the speeds of the
machines. Our goal is to design a mechanism which asks the agents for their
speeds, assigns the jobs to the agents so as to minimize the makespan, and
computes payments to pay each agent. Each agent, on the other hand, is trying
to maximize her profit, which is equal to the payment received minus the time
it takes to process the jobs assigned to the agent. Hence, agents may choose
to misrepresent their speed. A truthful mechanism is a mechanism in which
reporting the true speed is a dominant strategy for each agent, i.e. no matter
what the speeds are that are reported by the other agents, the strategy which
yields the maximum profit for a given agent is to report its true speed.

The problem we consider belongs to the class of mechanism design problems
for one-parameter agents. For a problem in this class, there are m agents, and
each agent i holds some piece of private data consisting of a single parameter
ti ∈ R≥0. All other input is public knowledge. The vector t = (t1, . . . , tn)
combined with the rest of the input defines a (classical) optimization problem,
for which a feasible solution takes the form of a set of loads wi(t) to be assigned
to the agents. A mechanism for a problem in this class solicits a bid bi from
each agent, and based on b = (b1, . . . , bm), it computes feasible loads wi(b) and
payments pi(b) for agents i = 1, . . . ,m. The goal of agent i is to maximize
profiti = pi(b) − wi(b)ti. Let b−i be the bids of the other agents, and let
b = (b−i, bi) denote the vector containing all bids. The mechanism is truthful if
for each agent i, reporting her true private value ti dominates any other bid bi,
i.e., profiti(b−i, ti) ≥ profiti(b−i, bi), for all b−i, bi.

It was shown by Archer and Tardos [1] that a necessary and sufficient condi-
tion to obtain a truthful mechanism for this class of mechanism design problems
is to have a monotone algorithm for the underlying problem, in which t is part
of the known input. An algorithm is monotone if wi(t−i, ti) is a non-increasing
function of ti. Given such an algorithm, Archer and Tardos show how to com-
pute payments that induce truth telling. In our setting, an agent’s private
information is ti = 1

si
, and a monotone algorithm means that the amount of

2

work assigned to a machine should not increase if the speed of the machine is de-
creased (and all other input remains the same). Since the problem Q|prec|Cmax

is NP-hard, we are concerned with finding monotone approximation algorithms
for Q|prec|Cmax. Combined with the payment scheme of [1], a monotone α-
approximation algorithm results in a truthful mechanism that finds a schedule
with makespan at most α times optimal.

The problem of finding a monotone approximation algorithm forQ|prec|Cmax

was first considered by Krumke, Schwahn, van Stee and Westphal [6]. They
showed how to turn an O(

√
m)-approximation algorithm by Jaffe [5] into a

monotone O(m2/3)-approximation algorithm. Their approach was generalized
by Thielen and Krumke [8] to a general scheme for designing monotone al-
gorithms. Their scheme also yields a monotone algorithm for the problem
Q|prec, rj |Cmax, in which the existence of a job j is unknown until its release
time rj . The best known (not necessarily monotone) approximation algorithms
for Q|prec|Cmax and Q|prec, rj |Cmax are O(logm)-approximation algorithms by
Chekuri and Bender [2] and Chudak and Shmoys [3]. An open question posed
by Krumke et al. [6] is whether one can get better monotone approximation
algorithms using these approaches.

In this paper, we slightly weaken the monotonicity requirement and an-
swer Krumke et al.’s question affirmatively under this weakened definition. In
particular, we show that a slightly modified and randomized version of the al-
gorithm by Chekuri and Bender [2] is a O(logm)-approximation algorithm that
is monotone in expectation: the expected amount of work assigned to a machine
does not increase if the machine’s speed is decreased. Using Archer and Tar-
dos [1]’s result, this implies a mechanism that is truthful in expectation: an
agent cannot improve its expected payoff by being untruthful. Using a result
by Shmoys, Wein and Williamson [7], it is straightforward to extend our ap-
proach to Q|prec, rj |Cmax and obtain a O(logm)-approximation algorithm that
is monotone in expectation.

2. Problem Definition

In the problem Q|prec|Cmax, we are given a set of n jobs with processing
times p1, . . . , pn, precedence constraints on the jobs in the form of a partial order
≺, and machines with speeds {s1, . . . , sm}. If job j is processed on machine i,
it takes pj/si time units to process. A schedule is an assignment of jobs to
machines, plus a starting time for each job, so that a job k starts after all jobs
j such that j ≺ k have been processed, and a machine works on only one job
at a time. We assume without loss of generality that s1 ≥ s2 ≥ . . . ,≥ sm. The
makespan of a schedule is the time when the last job is finished. We’ll denote
by C∗max the minimum makespan over all feasible schedules.

We define the amount of work assigned to machine i as the sum of pj over
all jobs j that are assigned to machine i. An algorithm for Q|prec|Cmax is
monotone if the following holds: if we consider two instances that are identical
except for the speed of machine i, which is s in the first instance and s′ > s
in the second instance, then the amount of work assigned to machine i in the

3

schedule produced for the second instance is not smaller than the amount of
work assigned to it in the first schedule. A randomized algorithm is monotone
in expectation if the expected amount of work assigned to machine i in the
second instance is not smaller than the expected amount of work assigned to it
in the first schedule.

The problem Q|prec, rj |Cmax is defined similarly to Q|prec|Cmax, except that
the existence of a job is not known until the time rj when it is released.

3. The Chekuri-Bender algorithm

We begin by describing the algorithm proposed by Chekuri and Bender [2].
We will need to make only a few changes to achieve monotonicity, which we will
describe in the next section.

The algorithm of Chekuri and Bender [2] begins by computing a lower bound
B on the makespan of any feasible schedule. To do so, they find a maximal chain
decomposition of the jobs: A chain P is a subset of jobs j1, . . . , jk such that
ji ≺ ji+1 for all i ∈ {1, . . . , k−1}. The length of P is denoted by |P | =

∑k
i=1 pji .

A chain decomposition is a partition of the precedence order into an ordered
collection of chains (P1, . . . , Pr) such that P1 is a longest chain and (P2, . . . , Pr)
is a maximal chain decomposition with the jobs in P1 removed. If we consider
the first k chains in the chain decomposition, then at any point in time at most
k different machines are working on the jobs in these chains. The total speed of
these k machines is at most

∑k
i=1 si where we recall that speeds are assumed to

be ordered so that si ≥ si+1. Hence there must be some job in these k chains

which completes at
∑k

i=1 |Pi|∑k
i=1 si

or later. This observation gives rise to the following

lower bound on the makespan:

B = max

{∑n
j=1 pj∑m
i=1 si

, max
1≤k≤min{r,m}

{∑k
i=1 |Pi|∑k
i=1 si

}}
≤ C∗max.

The Chekuri-Bender algorithm uses an idea of Chudak and Shmoys [3] to reduce
an instance with an arbitrary number of speeds to an instance with only K =
O(logm) speeds while losing only a constant factor in the approximation ratio:
ignore machines with speed less than 1

m times the speed of the fastest machine,
and divide the remaining machine speeds into speed classes, by rounding down
all speeds to the nearest power of 2.

Let s̄1, . . . , s̄K be the remaining distinct speeds. The algorithm iterates
through the chains in the maximal chain decomposition and assigns them to
the speed classes. See Figure 1 for a description of the algorithm Chain-Alloc
that allocates the chains. For a given assignment, let k(j) be the speed class
that (the chain containing) job j is assigned to. Given the output of Chain-
Alloc, the jobs are scheduled according to speed-based list scheduling [3]: if a
job j is available and there is a free machine i such that machine i is in speed
class k(j), then schedule job j on machine i.

4

Chain-Alloc

Compute a maximal chain decomposition of the jobs P = (P1, P2, . . . , Pr).

Set B = max

{∑n
j=1 pj∑m
i=1 si

, max
1≤k≤min{r,m}

{∑k
i=1 |Pi|∑k
i=1 si

}}
.

Ignore all machines i with si <
1
ms1, and round down the speeds of all

other machines to the nearest power of 2.
Let s̄1, . . . , s̄K be the remaining distinct speeds.
Let mk the number of machines with (rounded) speed s̄k.
Let ` = 1.
For k = 1 to K do

Let b ≤ r be the maximum index such that
∑b

j=` |Pj | ≤ 4Bmks̄k.

Assign jobs in chains P`, . . . , Pb to speed k.
Let ` = b+ 1. If ` > r return.

return.

Figure 1: Algorithm of Chekuri and Bender [2] for allocating chains to speed classes.

We repeat a key point in the analysis by Chekuri and Bender, which we
will be using in the next section to show monotonicity. The following lemma is
(contained in) Lemma 2 in [2].

Lemma 1 (Chekuri & Bender [2]). Let P`(k), . . . , Pr be the chains remain-
ing when Chain-Alloc considers speed k. Then |P`(k)|/s̄k ≤ 2B.

4. A monotone algorithm

Recall that our goal is to show that if a machine changes its speed from s
to s′ > s, then the amount of work assigned to it does not decrease. We begin
by analyzing the original Chekuri-Bender algorithm. Our analysis will highlight
certain cases in which monotonicity is not guaranteed, and we show two small
adaptations which do ensure monotonicity.

Let mk be the number of machines with rounded speed s̄k, and define

Dk =
1

mks̄k

∑
j:k(j)=k

pj .

We will assume that in the speed-based list scheduling phase of the algorithm,
all machines in one speed class are indistinguishable for the algorithm. To be
precise, we simulate the speed-based list scheduling where all machines have
speed equal to their true speed rounded down to the nearest power of 2, and
machines within one speed class are considered in random order. This gives
an assignment of jobs to machines, plus a starting time for each job, which

5

is feasible for the real instance. The expected amount of work assigned to a
machine in speed class k is equal to Dks̄k.

The following lemma allows us to bound the expected amount of work as-
signed to a machine.

Lemma 2. For any 1 ≤ k ≤ K we have that either 3B < Dk ≤ 4B, or Du = 0
for u > k.

Proof: From Lemma 1, we know that if there are still chains P`(k+1), . . . , Pr

remaining when considering speed k + 1 then |P`(k+1)|/s̄k+1 ≤ 2B. Since s̄k ≥
2s̄k+1, we get that |P`(k+1)|/s̄k ≤ B. Hence if Pj , . . . , P`(k+1)−1 are the chains
assigned to speed k, we have that

Dk =

∑`(k+1)−1
i=j |Pj |
mks̄k

=

∑`(k+1)
i=j |Pj |
mks̄k

−
|P`(k+1)|
mks̄k

> 4B −B = 3B.

The upper bound on Dk follows directly from the way the algorithm assigns the
chains to the speed classes. 2

Now, if a machine changes its speed, the bound B changes:

Lemma 3. If B is the lower bound on a particular instance, and we change the
speed of some machine from s to s′ where s′ > s and let B̃ be the new lower
bound, then B̃ ≥ s

s′B.

Proof: Let the speeds in the original instance be s1 ≥ s2 . . . ≥ sm, and let
the speeds in the modified instance be s′1 ≥ s′2 ≥ . . . ≥ s′m. Let the machine
of which the speed is changed be the `-th machine in the original ordering, so
s` = s, and let u ≤ ` be the position of this machine in the new ordered set of
speeds, so s′i = si for i < u and i > `, s′u = s′, and s′i = si−1 for u+ 1 ≤ i ≤ `.

Note that it is enough to show that for any k ≤ m

k∑
i=1

s′i ≤
s′

s

k∑
i=1

si.

We’ll show that s′i ≤ s′

s si for every i = 1, . . . ,m: For i < u and i > `, s′i = si

and since s′ > s, indeed s′i ≤ s′

s si. For i = u, s′u = s′

s s = s′

s s` ≤
s′

s su since

` ≥ u so s` ≤ su. For u + 1 ≤ i ≤ `, note that s′i = si−1 = si−1

si
si ≤ s′

s si,
where the last inequality follows since (i) si−1 ≤ su ≤ s′ since i − 1 ≥ u and
s′ = s′u ≥ s′u+1 = su, and (ii) si ≥ s` = s. 2

If we disregard the second case in Lemma 2, then we see that the Chekuri-
Bender algorithm is close to being monotone: The expected amount of work
processed by a machine in speed class s̄k is Dks̄k ∈ (3Bs̄k, 4Bs̄k]. Now suppose
one machine changes its speed from s̄k to s̄k′ > s̄k, i.e., we assume this machine’s
speed is a power of 2 both before and after its speed is raised. Let B̃, D̃k

denote the new bound and average loads. Then the expected amount of work
assigned to the machine is D̃k′ s̄k′ ∈ (3B̃s̄k′ , 4B̃s̄k′], where 3B̃s̄k′ ≥ 3Bs̄k by

6

Lemma 3! It is not yet monotone, since it is possible that Dks̄k = 4Bs̄k and
D̃k′ s̄k′ = 3Bs̄k + ε, but it is not that far off.

The first change we make to the Chekuri-Bender algorithm is that we round
down the speeds of the machines to the nearest power of 2 before we call the
Chain-Alloc algorithm. In Section 4.1, we will show that in an instance in which
all speeds are powers of 2, we can strengthen the relation found in Lemma 3
between the value B before and after we change the speed of a single machine,
unless the machine that changes its speed was in the first speed class in the
original instance. This improved relation between the bounds is enough to deal
with speed changes except when the machine that changes its speed is in the
first speed class.

We will show how to deal with increase in speed of one of the machines in
the first speed class in Section 4.2, by assigning a higher load to the first speed
class if it has only one machine.

4.1. Rounding the speeds before calling the Chain-Alloc algorithm

Lemma 4. Suppose B is the bound on a particular instance with speeds that
are powers of 2, and consider some machine with speed s < s1. Let B̃ be the
new bound, if we replace this machine with a machine with speed s′ > s, where
s′ is again a power of 2. Then B̃ ≥ 4

3
s
s′B.

Proof: Consider the set of chains and machines on which B attains its value,
i.e. let

B =

∑`
j=1 |Pj |∑k
j=1 sj

,

where either ` = k ≤ min{r,m}, or ` = r and k = m (in the latter case, the
numerator is equal to

∑n
j=1 pj , since the r chains give a partition of the set

of all jobs). Then also B̃ ≥
∑`

j=1 |Pj |∑k
j=1 s′j

, where s′i are the new ordered speeds.

Note that
∑k

j=1 s
′
j −

∑k
j=1 sj ≤ s′ − s. We’ll show that for any k ≥ 1, s′ −

s ≤ 3
4
s′

s

∑k
j=1 sj −

∑k
j=1 sj . It follows that

∑k
j=1 s

′
j ≤ 3

4
s′

s

∑k
j=1 sj , and thus

B̃ ≥ 4
3

s
s′

∑`
j=1 |Pj |∑k
j=1 sj

= 4
3

s
s′B.

To show that s′ − s ≤ 3
4
s′

s

∑k
j=1 sj −

∑k
j=1 sj , note that s < s1, and since s

7

and s1 are powers of two, s ≤ 1
2s1. Therefore s ≤ 1

2

∑k
j=1 sj , which gives:

s′ − s = (
s′

s
− 1)s ≤ (

s′

s
− 1)

1

2

k∑
j=1

sj

=
1

2

s′

s

k∑
j=1

sj −
1

2

k∑
j=1

sj

=
3

4

s′

s

k∑
j=1

sj − (
1

4

s′

s
+

1

2
)

k∑
j=1

sj

≤ 3

4

s′

s

k∑
j=1

sj −
k∑

j=1

sj ,

where the last inequality follows since s′ ≥ 2s. 2

Lemma 5. If we call the Chekuri-Bender algorithm with speeds rounded down
to the nearest power of 2, then the expected amount of work assigned to a ma-
chine does not decrease if it changes its speed from s to s′ > s unless the machine
that changes its speed is in the first speed class before it changes its speed.

Proof: Since the algorithm only uses the speeds rounded down to the nearest
power of 2, we consider a machine that changes its rounded speed from s to
s′ > s. We will call the instance where this machine’s rounded speed is s the
original instance, and the instance where every other machine has the same
speed, but this machine has rounded speed s′ the modified instance.

For any value computed by the algorithm, we denote by a tilde that it is the
value computed when we run the algorithm on the modified instance, e.g. B
and B̃ are the bounds computed by the algorithm if the machine’s speed is s
and s′ respectively.

Assume that s ≥ 1
ms1, since otherwise no jobs are assigned to the machine

in the original instance, and the lemma is obviously satisfied. Let k be the
speed class that s belongs to, and k′ the speed class that s′ belongs to. For ease
of exposition, we assume that for both the original instance and the modified
instance the algorithm considered the speed class s̄k′ , even though it may be
the case that there were no machines with speed s̄k′ in the original instance
(mk′ = 0). Note however that adding k′ with mk′ = 0 into the for-loop of the
Chain-Alloc algorithm does not change the outcome of the algorithm.

We consider two cases.
Case (i) D̃k′ > 3B̃. By Lemma 2, the expected amount of work assigned to

the machine in the original instance is at most 4Bs, and the expected amount
of work for the machine in the modified instance is at least 3B̃s′. Since the
machine that changed its speed was not in the first speed class, by Lemma 4,
3B̃s′ ≥ 4Bs.

Case (ii) D̃k′ ≤ 3B̃.

8

Claim 6. If D̃k′ ≤ 3B̃ then the jobs assigned to speed class k′ in the modified
instance form a superset of the jobs assigned to speed classes k′ up to k in the
original instance.

When we consider speed class k′ in the modified instance, all re-
maining jobs are assigned to speed class k′, by Lemma 2 and the fact
that D̃k′ ≤ 3B̃. Hence it is enough to show that the chains remain-
ing when we consider k′ in the modified instance form a superset of
the chains remaining when we consider k′ in the original instance.

Let P`(j), . . . , Pr be the chains remaining when we consider speed
j in the original instance, and P˜̀(j), . . . , Pr be the chains remaining
when we consider speed j in the modified instance. We show by
induction that `(j) ≥ ˜̀(j) for all j ≤ k′. Clearly, for j = 1 this
is true. So suppose it holds for j ≤ k′ − 1. Note that mj s̄j does

not change, and B̃ ≤ B. So if
∑˜̀(j+1)−1

i=˜̀(j)
|Pi| ≤ 4B̃mj s̄j , then

also
∑˜̀(j+1)−1

i=˜̀(j)
|Pi| ≤ 4Bmj s̄j . Since ˜̀(j) ≤ `(j) by the induction

hypothesis, we must assign chains `(j), . . . , ˜̀(j+ 1)− 1 to speed j in
the original instance, so `(j + 1) ≥ ˜̀(j + 1). �

Let Wk and Wk′ be the total amount of work assigned to speed class k and
k′ in the original instance, i.e. Wk = mks̄kDk and Wk′ = mk′ s̄k′Dk′ . In the
original instance, the expected amount of work assigned to the chosen machine
is Wk/mk. By the claim, the expected amount of work assigned to this machine

in the modified instance is at least Wk+Wk′
mk′+1 . Since mk ≥ 1, it is enough to show

that Wk′ ≥ mk′
mk

Wk. If Wk = 0, then monotonicity clearly holds, so assume

Wk > 0. By Lemma 2, Wk ≤ mks̄k4B. Since k′ < k, by Lemma 2 we also know
that Wk′ ≥ mk′ s̄k′3B. Note that s̄k′ ≥ 2s̄k. Hence Wk′ ≥ mk′ s̄k6B ≥ mk′

mk
Wk.
2

4.2. Assigning a higher load to unique machine in the first speed class

In the previous section, we did not yet show that monotonicity holds if the
machine that changes its speed is in the first speed class, because Lemma 4
does not hold in this case. We now show how to adapt the algorithm so that
monotonicity is ensured in this case as well. Note that if a machine in the first
speed class increases its speed, then it forms a new speed class in which it is
the only machine. To ensure that the expected amount of work assigned to the
machine does not decrease in this case, we therefore make a small change in
the assignment for the first speed class: if there is only one machine in the first
class, it will get a slightly larger load.

In particular, if m1 = 1, we change the upper bound on the length of the
chains assigned to speed class 1 in Figure 1:

9

If k = 1 and m1 = 1 then

let b ≤ r be the maximum index such that
∑b

j=` |Pj | ≤ 5Bmks̄k,

otherwise

let b ≤ r be the maximum index such that
∑b

j=` |Pj | ≤ 4Bmks̄k.

It can be verified that the proof of Lemma 1 given by Chekuri and Bender
[2] still holds in this case. This gives the following new version of Lemma 2, the
proof of which is similar to the proof of Lemma 2.

Lemma 7. Let αk = 1 if k = 1 and m1 = 1, and αk = 0 otherwise. For any
1 ≤ k ≤ K we have that either (3 + αk)B < Dk ≤ (4 + αk)B, or Du = 0 for
u > k.

We now show that the two changes we proposed lead to a monotone algorithm.

Lemma 8. If we call the Chekuri-Bender algorithm with speeds rounded down
to the nearest power of 2, and use the modified assignment rule for the first
speed class if it has only one machine, then the amount of work assigned to a
machine does not decrease if it changes its speed from s to s′ > s.

Proof: As in the proof of Lemma 5, we may assume a machine changes its
rounded speed from s to s′ > s. We will call the instance where this machine’s
rounded speed is s the original instance, and the instance where every other
machine has the same speed, but this machine has rounded speed s′ the modified
instance. As in the proof of Lemma 5, for any value computed by the algorithm,
we denote by a tilde that it is the value computed when we run the algorithm
on the modified instance.

If the machine that changes its speed is not in the first speed class, then
the proof of Lemma 5 shows that the expected amount of work assigned to the
machine does not decrease.

Now suppose the machine is in the first speed class before it changes its
speed, and note that it becomes the unique fastest machine after it changes its
speed.

If D̃1 ≤ 4B̃, then by Lemma 7 all jobs are assigned to this machine, and
hence monotonicity is ensured. If D̃1 > 4B̃, we consider the cases when the
machine that changed its speed was or was not the unique machine in the first
speed class before it changed its speed. In the second case, note that by Lemma
7 it received at most 4Bs before it changed its speed, and that by Lemma 3,
B̃ ≥ s

s′B, and hence the amount of work assigned to the machine after it changes
its speed is at least 4Bs. In the first case (i.e. the machine that changes its
speed is the unique machine in the first speed class in the original instance),

let P1, . . . , Pb be the chains allocated to it originally. Then
∑b

j=1 |Pj | ≤ 5Bs.

Moreover, from Lemma 3, B ≤ s′

s B̃, hence
∑b

j=1 |Pj | ≤ 5B̃s′, hence these chains
are also allocated to the machine when its speed is s′. 2

Theorem 9. There exists a randomized O(logm)-approximation algorithm for
Q|prec|Cmax that is monotone in expectation.

10

Proof: By Lemma 8, the modified Chekuri-Bender algorithm is monotone
in expectation. The correctness of the algorithm follows from the analysis of
Chekuri and Bender [2]: in particular, they show that it follows from Lemma
1 that all chains in the maximal chain decomposition (and hence all jobs) are
assigned to a speed class, and will hence be scheduled in a feasible way by the
speed-based list scheduling algorithm.

The approximation factor follows from Lemma 4 in Chekuri and Bender [2],
and Theorem 2.1 from Chudak and Shmoys [3]: Let P be the set of all chains
induced by the precedence constraints, and for a given job j let k(j) be the
speed class that j gets assigned to, and let C = maxP∈P

∑
j∈P

pj

s̄k(j)
. Chudak

and Shmoys show that the length of the schedule produced by speed-based list
scheduling is at most C +

∑K
k=1Dk. We know from Lemma 7 that Dk ≤ 5B,

and it follows from Lemma 4 in Chekuri and Bender that C ≤ 2KB. If we had
computed B with speeds rounded up rather than rounded down, then B is a
lower bound on C∗max. Hence C∗max ≥ 1

2B. So we find that C +
∑K

k=1Dk ≤
14KC∗max. It remains to note that K ≤ log2m, since s̄K ≥ 1

m s̄1 and s̄k+1 ≤ 1
2 s̄k

for k = 1, . . . ,K − 1. 2

Theorem 10. There exists a randomized O(logm)-approximation algorithm
for Q|prec, rj |Cmax that is monotone in expectation.

Proof: Shmoys, Wein and Williamson [7] give a general approach for con-
verting a ρ-approximation algorithm for a scheduling problem without release
dates into a 2ρ-approximation algorithm for the problem with release dates: the
jobs are divided into blocks, where the first block contains the jobs for which
rj = 0, and the jobs in the k-th block are the jobs that are released during the
time when the machines are processing the jobs in the (k−1)-st block. The jobs
in a block are scheduled using the algorithm for the problem without release
dates. It is easy to see that if the algorithm for the problem without release
dates is monotone (in expectation) then so is the algorithm we thus obtain for
the problem with release dates. 2

Acknowledgements

The research reported in this paper was performed while the author was at
Cornell University and the Institute for Theoretical Computer Science, Tsinghua
University. It was supported in part by the National Natural Science Foundation
of China Grant 60553001, and the National Basic Research Program of China
Grant 2007CB807900,2007CB807901.

References

[1] A. Archer and É. Tardos. Truthful mechanisms for one-parameter agents.
In FOCS ’01: 42nd IEEE Symposium on Foundations of Computer Science,
pages 482–491. IEEE Computer Soc., Los Alamitos, CA, 2001.

11

[2] C. Chekuri and M. Bender. An efficient approximation algorithm for mini-
mizing makespan on uniformly related machines. J. Algorithms, 41(2):212–
224, 2001. Preliminary version appeared in IPCO ’98.

[3] F. A. Chudak and D. B. Shmoys. Approximation algorithms for precedence-
constrained scheduling problems on parallel machines that run at different
speeds. J. Algorithms, 30(2):323–343, 1999. Preliminary version appeared
in SODA ’97.

[4] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan.
Optimization and approximation in deterministic sequencing and schedul-
ing: a survey. Ann. Discrete Math., 5:287–326, 1979. Discrete optimization
(Proc. Adv. Res. Inst. Discrete Optimization and Systems Appl., Banff,
Alta., 1977), II.

[5] J. M. Jaffe. Efficient scheduling of tasks without full use of processor re-
sources. Theoret. Comput. Sci., 12(1):1–17, 1980.

[6] S. O. Krumke, A. Schwahn, R. van Stee, and S. Westphal. A monotone
approximation algorithm for scheduling with precedence constraints. Oper.
Res. Lett., 36(2):247–249, 2008.

[7] D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines
on-line. SIAM J. Comput., 24(6):1313–1331, 1995. Preliminary version
appeared in FOCS’91.

[8] C. Thielen and S. O. Krumke. A general scheme for designing monotone
algorithms for scheduling problems with precedence constraints. In WAOA
’08: 6th International Workshop on Approximation and Online Algorithms,
pages 105–118, 2008.

12

