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Abstract

We introduce new problems of finding minimum-cost rank-
ings and clusterings which must be consistent with certain
constraints (e.g. an input partial order in the case of rank-
ing problems); we give deterministic approximation algo-
rithms for these problems. Randomized approximation al-
gorithms for unconstrained versions of these problems were
given by Ailon, Charikar, and Newman [2] and by Ailon
and Charikar [1]. Finding deterministic approximation al-
gorithms for these problems answers an open question of
Ailon et al. [2].

In particular, we give deterministic algorithms for con-
strained weighted feedback arc set in tournaments, con-
strained correlation clustering, and constrained hierarchical
clustering related to finding good ultrametrics. Our algo-
rithms follow the paradigm of Ailon et al. [2] of choosing
a particular vertex as a pivot and partitioning the graph
according to the pivot; unlike their algorithms, we do not
choose the pivot randomly but rather use an LP relaxation
to choose a good pivot deterministically. Additionally, the
use of the LP relaxation allows us to impose constraints eas-
ily and analyze the results. In several cases we are able
to find approximation factors for the constrained problems
that improve on the factors they obtained for the uncon-
strained cases. We also give a combinatorial algorithm for
constrained weighted feedback arc set in tournaments with
weights satisfying probability constraints. This algorithm
improves on the best known factor given by deterministic
combinatorial algorithms for the unconstrained case.

1 Introduction

In this paper, we consider several problems related to
the constrained aggregation of inconsistent information.
The problems we consider can be divided into two cate-
gories: ranking and clustering problems. In the ranking
problems, we are given a set of objects and (possibly
contradictory) information about the relative ranking
of each pair of objects, along with a partial order. We
wish to find a ranking of the objects consistent with the
partial order that minimizes the sum of pairwise dis-
crepancies with the input information (this optimality
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criterion is due to Kemeny [7]). In rank aggregation, for
example, we are given k rankings of the same n objects,
and want to combine these into one ranking that min-
imizes the sum over all pairs ¢, j such that i is ordered
before j of the number of input rankings that ordered
j before i. The partial order constraint allows us to
specify a priori information about the output ordering.
In the clustering problems, we wish to partition a set
of objects into clusters, and are given (again, possibly
contradictory) information about the relation between
any pair of objects. Consensus clustering is similar to
rank aggregation in that we want to combine multiple
input clusterings into a single clustering. In correlation
clustering, the input information consists of a ‘+’ indi-
cating that a pair would prefer to be clustered together
or ‘=’ indicating that a pair would prefer to be sepa-
rated. We also can specify consistent information that
pairs of objects must be clustered together or must not
be clustered together in the final clustering; this con-
straint plays the same role as the input partial order in
the ranking problems. Hierarchical clustering is a gen-
eralization of correlation clustering. We want to find
a nested clustering of the elements, and are given in-
formation for every pair of elements and for every level
of the clustering. This problem can also be viewed as
finding an ultrametric that is close to given pairwise dis-
tances. Again, we can specify constraints about pairs
that must be clustered together or must not be clustered
together at each level. These kinds of problems arise
in many contexts, for example, in building meta-search
engines for Web search, where we want to get robust
rankings that are not sensitive to the various shortcom-
ings and biases of individual search engines by combin-
ing the rankings of the individual search engines [5];
constraints on the output ordering may reflect a pri-
ori beliefs about the output ordering (e.g. the top-level
page of a website should be ordered before subpages of
the site). In an example from biology, the goal is to find
classifications of genes by integrating data from different
experiments [6]; again, the input constraints can reflect
prior beliefs about the output classification.

We will model these problems as graphs, where
each vertex represents an object, and the information



relating objects ¢ and j is represented by nonnegative
weights on the edge 7,j. In the case of correlation or
consensus clustering problems, we define weights w;;
and w,;. In consensus clustering, w;"j (w;;) gives the
fraction of input clusterings that put ¢ and j in the same
cluster (in separate clusters). Correlation clustering can
be modeled as a 0/1 weighted case. A set of pairs of
vertices that must or must not be clustered together
is part of the input. The goal of these problems is to
minimize the sum of w;; over all ¢, j in the same cluster

plus the sum of wl‘; over all 4, j that are not in the same
cluster, subject to the given constraints. In the case
of hierarchical clustering, we want to find a correlation
clustering at each level, with the additional constraint
that the clustering at level £ — 1 is a refinement of the
clustering at level . We also specify constraints for
each level that specify pairs that should be clustered
together or apart (respectively) at that level. For
ranking problems, we will have a weight w;; and a
weight wj; and wish to minimize the sum of wj; over
all pairs ¢, j such that 7 is ranked before j. For example
in the case of rank aggregation, w;; gives the fraction of
input rankings that rank ¢ before j. We are also given
an input partial order P. We will refer to this problem
as the constrained weighted feedback arc set problem on
tournaments.

Ailon, Charikar, and Newman [2] and Ailon and
Charikar [1] recently considered unconstrained versions
of these problems in which any ordering/clustering is
a feasible output. As in their papers, we will give
approximation algorithms for the case when the weights
satisfy probability constraints (i.e. w;; +w;; = 1 or
w;; + w;; = 1) and/or the triangle inequality (i.e.
Wij+Wjk = Wik OF Wi +W > Wiy and w;j—l—w;fk > w;)
Note that the weights in all applications mentioned
above satisfy either probability constraints, or both
probability and triangle inequality constraints. Ailon et
al. [2] give algorithms for the unconstrained problems
that all fall into one general framework. The algorithm
recursively generates a solution, by choosing a random
vertex as “pivot” and ordering all other vertices with
respect to the pivot vertex according to some criteria.
In the first algorithm they give for the ranking problem,
a vertex j is placed on the left of the pivot k if wji, > wy;
or on the right otherwise. Next, the algorithm recurses
on the two instances induced by the vertices on each
side. In the case of a clustering problem, a vertex j
is placed in the same cluster as the pivot vertex k if
w;rk > w;k The algorithm recurses on the instance
induced by the vertices that are not placed in the same
cluster as the pivot vertex.

We answer an open question of Ailon et al. [2]
by giving deterministic versions of their algorithms.

We will show that by solving an LP relaxation of the
problem to be solved, we can deterministically choose
a good pivot. Furthermore, our algorithms extend to
our new, constrained variants of their problems. In
several cases, we are able to obtain improved guarantees
compared to the pivoting algorithms by Ailon et al. [2]
for the unconstrained problems; in remaining cases, our
guarantees are the same as theirs for the unconstrained
problems. Although it is possible to use our method
to give a deterministic version of the algorithm from
[1] for hierarchical clustering, we give a simpler, top-
down algorithm which achieves the same approximation
guarantee. The algorithm calls a slight variant of the
algorithm for constrained correlation clustering to find
the top level clustering, and then recurses on all clusters
found. Our analysis of this algorithm is simpler, too,
since the performance guarantee of [1] uses two different
LPs in its analysis, and we use a single LP for both the
algorithm and analysis.

In related work, Coppersmith, Fleischer and Rudra
[4] have also given a deterministic algorithm for the un-
constrained feedback arc set problem in tournaments
where the weights obey the probability constraints.
They show that sorting by indegree is a 5-approximation
algorithm. We give another combinatorial algorithm
that first removes all directed triangles, and then uses
a simple recursive algorithm by Chudnovsky, Seymour
and Sullivan [3] to generate a ranking. We show that
this gives a factor 4 in the unconstrained case. Further-
more, we generalize these results to give a combinatorial
6-approximation algorithm for the constrained case.

We also answer another open question of Ailon et
al. [2]: whether there exists an approximation algorithm
for the unconstrained weighted correlation clustering
when the weights satisfy only the triangle inequality
and not probability constraints. It seems appropriate
in the case of weighted correlation clustering to have
the following two inequalities: (1) w;;, < w;; +w;, and
(2) wi, < wj;+wj, which say (1) the cost of clustering
i and k together (w;,) cannot be more than the cost
of clustering ¢ and j together and clustering j and k
together (w;; + w;;), and (2) the cost of separating i
and k (w;’,‘c) cannot be more than the cost of clustering
i and j together and separating j and k (w;; + wj}c)
We show that under these assumptions on the weights
our algorithm yields a 2-approximation. Ailon et al. [2]
only assume the first type of constraints.

Ailon et al. [2] also propose a way to use pivoting
for a randomized rounding algorithm. The (expected)
approximation guarantee of this LP rounding algorithm
is better than ours in the case when the weights satisfy
only probability constraints, and we note that our algo-
rithm is not faster than their LP rounding algorithm, as



Ranking Clustering
ours ACN [2] | ACN-LP [2] | CFR [4] ours | ACN [2] | ACN-LP [2]
(cons) (unc) (unc) (unc) (cons) (unc) (unc)
Probability cons. 3 (unc:4,cons:6) 5 % 5 3 5 %
Triangle ineq. 2 3 - 2 - -
Prob.cons.+Triangle ineq. 2 2 2 2 2 2
Aggregation 2 1—71 % 2 % %

Table 1: The first column under each heading summarizes the results in this paper except hierarchical clustering; (cons)
denotes result for constrained problems, (unc) unconstrained problems. The next two columns give results for unconstrained
problems, given by randomized pivoting (ACN) and randomized LP rounding (ACN-LP). The result in column (CFR) is
obtained by a deterministic combinatorial algorithm. The approximation guarantees for our combinatorial algorithm for
unconstrained and constrained ranking with probability constraints are given in parentheses. The last row gives the results

when taking the best of the algorithm generated solution and

we solve the same LP relaxation. Finally, Ailon et al. [2]
show that better (< 2) performance guarantees can be
achieved for the unconstrained case when the weights
are a convex combination of actual rankings or clus-
terings, by taking the best of their pivoting algorithm
and picking a random permutation/clustering from the
input permutations/clusterings. We have not been able
to prove a similar result for our deterministic algorithm,
even in the unconstrained case.

2 Constrained Weighted Minimum Feedback
Arc Set in Tournaments

Given a set of vertices V', nonnegative weights w;; and
wj; for each pair of vertices ¢ and j, and a partial order
(V, P), we want to find a linear extension of P, i.e. a
permutation 7 such that if (i,5) € P then 7 ranks i
before j, that minimizes the weight of the backward
arcs, i.e. the sum over all 4,5 such that ¢ is ranked
before j of wy;.

We will give an approximation algorithm for the
case when the weights satisfy probability constraints, i.e.
for any pair of vertices ¢, j, w;; +w;; = 1, or the triangle
inequality, i.e. for any triplet 4, j,k, wi; + wjr > Wik

If we let z;; = 1 denote that ¢ is ranked before 7,
then any feasible ranking satisfies x;; + z;; = 1 and
Tij + Tjk + XTps = 1 (since if Tij + Tk + Tgs = 0, then j
is ranked before %, k is ranked before j but ¢ is ranked
before k, which is not possible). Hence the following
linear program gives a lower bound on the minimum
weight feedback arc set:

min E (xijwji + xjiwij)

1<j

st. Tyt aie o >1 for all distinct ¢, j, k
(LP) xij+a=1 for alli # j
xi; =1 for all (i,7j) € P
x5 >0 for all ¢ # j

a random input permutation/clustering.

A similar linear program was also used by Ailon et al.
[2] for the unconstrained case, where P = ().

Given an optimal solution z to (LP) for instance
(V,w, P), we form a tournament G = (V,A), where
(i,7) € Aonly if z;; > £. We will break ties in such a
way as to ensure that there are no “triangles” containing
an arc in P, i.e. there is no (4,j), (j, k), (k,7) € A such
that (¢,7) € P. We will use the optimal solution z to
(LP) to find a vertex to pivot on, and given a pivot
vertex k, we will put vertex j to the left or right of &
depending on whether (j,k) € A or (k,j) € A. Asin
Ailon et al. [2], we then recurse on the set of vertices
to the left and right of k. In the recursive calls, we do
not resolve the LP, but use the optimal solution x to
the LP on the complete instance and the corresponding
tournament G = (V, A4).

Note that the only way a pair of vertices i,j with
(i,j) € A will have j before 4 in the ranking that is
returned by the algorithm, would be if ¢ and j are in
the same recursive call, and a pivot k is chosen such
that (k,7) € A, (j,k) € A. In other words, (4,7), (j, k)
and (k,7) form a triangle in A. Hence as long as we
ensure that there are no triangles in A that contain an
arc in P, then our algorithm returns a ranking that is a
linear extension of P.

Obviously, for pairs {j,k} where k is the pivot,
the cost we incur is at most twice the cost for {j, k}
in the optimal solution to (LP). However, if k is
the pivot vertex, then for pairs (j,7) that are in a
triangle with &k in A, i.e. pairs such that (i,k), (k,J)
and (j,7) € A, the algorithm orders i before j, even
though (j,i) € A, or x;; < 5. Let Tx(A) denote
the set of pairs (j,7) that are in a triangle with k,
so T(A) = {(4,9)|(, k), (k,4),(4,7) € A}. To bound
the cost for the pairs in Ty (A), we choose a pivot that
minimizes the ratio of the cost incurred by the algorithm
for these pairs and the cost for these pairs in the optimal



solution to (LP).

In the following, for V! C V let Ay = {(4,J) €
Ali € V'j € V'}, wyr = {wli € V',j € V'},
Tyr = {$2]|Z S V/,j € V/}, and let Cij = TijWj;+T ;Wi .
We give our algorithm, FAS-Pivot, in Figure 1.

Constrained-FAS(V, w, P)

Let z be an optimal solution to (LP) on instance (V,w, P).
Label the nodes in V such that label(i) # label(j) for i # j,
and (4,5) € P = label(i) < label(5). !
Let A= {(¢,7) : xi; > %} U
{(4,7) c @45 = % and label(z) < label(j)}.
Return FAS-Pivot(V, A, w, z).

FAS-Pivot(V, A, w, x)
Pick pivot k € V minimizing ZUADET(A) WTT
(G,) €Ty (A) 1
Set Vi, — 0, Vi «— 0.
For all j € V\{k}

If (4, k) € A then Vi, — VL, U{j}, else Vg — VR U {j}.
Let Ordered(Vy) = FAS-Pivot (V, Ay, ,wy, , v, ).
Let Ordered(VR) = FAS-Pivot(Vg, Avy,, wyy, Tvg)-
Return Ordered(Vy), k, Ordered(VRy).

I This can be done recursively by taking a vertex that has
no incoming arcs in P, labeling it 0, deleting this vertex
and all arcs in P that are adjacent to it, increasing the
label by 1, and recursing.

Figure 1: Our algorithm for constrained weighted feed-
back arc set on tournaments.

THEOREM 2.1. Constrained-FAS is a 3 (2)-approzima-
tion algorithm for the constrained weighted minimum
feedback arc set problem on tournaments when the
weights satisfy the probability constraints (triangle in-
equality).

Proof. We first note that the tournament A does not
have any triangles that contain an arc in P: Suppose
(i,7) € P and (i,4), (4, k), (k,4) is a triangle in A. If
(1,j) € P, then x;; = 1, and if (j,k), (k,4) are in A,
then we must have x;, > %,xm > % But by the first
set of constraints of (LP), x;x +xx; > 1 —2; =1, or
1—x;+1—=;; > 1, hence x,; and z;;, must be equal to
5. But then label(k) < label(i) and label(j) < label(k),
or label(j) < label(i), which contradicts the property of
the labeling that (i, j) € P = label(i) < label(j). Hence
A does not have any triangles that contain an arc in P,
and by the arguments given above, Constrained-FAS
returns a feasible solution.

In an iteration where k is pivot, we decide the order
between, and hence incur a cost for pairs {j, k}, and for
pairs {4, j} such that ¢ and j do not both end up on the
same side of k. Note that if a cost is incurred for a pair

of vertices, then no other cost is incurred for this pair
in later iterations. Clearly, the cost we incur for a pair
{Jj, k} when k is the pivot, is at most 2(w,xTx; +Wk; Tk )-
Similarly, if (i,k), (k,7),(i,7) € A then the cost for
pair {7,7} is at most 2(w;jz;; + wj;z;;). Hence the
only problematic pairs are those in Tj;(A), and if we
show that it is possible in each iteration to choose a

Z(j,i)ETk(A) Wy

pivot such that < a, for a equals

2 (j,0)eT(4) G
3 (2) when the weights satisfy probability constraints
(triangle inequality), then we are done.

Note that if = is feasible for (LP) on (V,w, P),
then for any V' C V, z is also feasible for (LP)
on the subgraph (V' wy:, Py/). We will show that
for a feasible solution z to (LP) on (V,wy,Py)
and a tournament Ay such that (i,7) € Ay only
if x; > %, there exists a pivot k such that
2T (Av) Wit < QD ey (Ay) Ciir DY showing that

keV 2u(ji)eTh(Ay) Wit = O ey (j,i))ETR (Av) Gt

Let T be the set of triangles {(i, k), (k,7), (j,i)} C
Ay, and for a triangle t € T, let w(t) = >, ., w, and
c(t) = 4ct Ca- Then

Z Z wi = Y > wu =y w(t),
kEV (§,i)ETk(Av) teT (j,i)et teT
Do o= ) D =) )
keV (j,i)eTr(Av) teT (j,i)€t teT

We will show that for any ¢ € T, c(t) > Lw(t),
where « is 3 (2) for the probability constraints (triangle
inequality) case. For a = (j, 1), let W, = w;;. Then for a
given triangle t in T' c(t) = >, (WaZa +wa(l —24)) =
Y act Wa + D ey (Wa — wa)x,. Suppose without loss of
generality, that t = {a1,a9,a3}, with @, — w,, <
Way — Way < Wey — Way- Lo give a lower bound on
¢(t), we consider the case that w,, — w,, > 0 and the
case that Wy, —w,, <0.

In the first case, w, — w, > 0 for all a € t. Hence
() = Dact Wa + 2 aet(Wa = Wa)Ta 2 Y qey Wa = w(t).
If Wy, — wq, = mingei{wW, — we} < 0, we know from
feasibility of x that ) ., x, < 2, and again by the
definition of T that z, > 15 for each a € t. Therefore

c(t) =

act act
2 Zwa + (Wa, — Wa,)
act
1, _ _
+§(wa2 - waQ) + §(wa3 - wag)

B 1 _ B 1
= wa1+§(wa2+was)+§( a2+wa3)'

In the case of probability constraints, w, + w, = 1, and
hence the above is equal to 1+1w,, > 1. Since w(t) < 3,



it follows that c(f) > fw(t). When the weights satisfy
the triangle inequality, W,, + We, > Wa,, so the above
is not less than w,, + Jw(t) > Jw(t). [ |

3 A Combinatorial Approach to the Feedback
Arc Set Problems

In this section, we describe a simple, combinatorial
approach to the constrained weighted feedback arc set
problem of Section 2. One reason for doing so is to
show an interesting connection to a graph-theoretic
conjecture related to the Caccetta-Héaggkvist conjecture
[9].

An wunordered pair {i,j} of vertices in a digraph
(directed graph) G is called a non-edge if neither (i, 5)
nor (j,7) is an arc of G. The vertices ¢, j are called the
ends of the non-edge.

CONJECTURE 4. ([9]) Let G be a digraph with no par-
allel edges, no directed cycles of length < 3, and k non-
edges. Then G has a feedback arc set of at most k/2
arcs.

This conjecture is due to Chudnovsky, Seymour and Sul-
livan and is related to the Caccetta-Haggkvist conjec-
ture (see [9]). (There are tight examples for the con-
jecture; for instance, the directed 4-cycle, any acyclic
tournament, or products of the two.) The following
weakening of the conjecture is known.

THEOREM 4.1. ([3]) Let G be a digraph as in Conjec-
ture 4. Then G has a feedback arc set of at most k arcs.

The proof of Theorem 4.1 above also gives a simple
recursive algorithm to find a feedback arc set of the
given size.

Given a digraph, a directed triangle cover is a set
of arcs such that every directed triangle in the digraph
shares at least one arc with this set.

THEOREM 4.2. There is a 2-approximation algorithm
to find a directed triangle cover. This holds even for
weighted graphs.

Proof (sketch). Krivelevich [8] gave a factor 2 algorithm
to find an undirected triangle cover. A similar algorithm
gives a factor 2 algorithm to find directed triangle cover.
The details are reserved for an extended version.

COROLLARY 4.1. There exists a 4-approximation algo-
rithm for the unconstrained unweighted minimum feed-
back arc set problem for tournaments.

Proof. Given a tournament A, use Theorem 4.2 to find
a directed triangle cover of A of size < 27, where 7
is the minimum size of a directed triangle cover of A.

Delete this triangle cover, and apply Theorem 4.1 to the
resulting digraph. This gives a feedback arc set of size
< 47. Since 7 is a lower bound on the size of a feedback
arc set, we get a 4-approximation algorithm. |

Theorem 4.1 can be generalized to a weighted ver-
sion suitable for the weighted feedback arc set problem
for tournaments where the weights satisfy the proba-
bility constraints (but not necessarily the triangle in-
equality). We omit the details here, but the approach
is similar to the proof of Theorem 4.1.

Finally, we describe the generalization of this ap-
proach to the constrained case. Again, for simplicity,
we describe the unweighted case. Let G be a digraph
and P be a partial order defined on its vertex set. We
call an arc (u,v) of G a hard arc if (u,v) € P, and a
soft arc otherwise.

By an induced P,, we mean an ordered triple
(u, v, w) of vertices such that G has the arcs (u,v) and
(v,w), but {u,w} is a non-edge.

THEOREM 4.3. Let G be a digraph, and P a partial
order on its vertex set, such that¥(u,v) € P, (u,v) is an
arc of G. Suppose G has no parallel edges, no directed
cycles with < 3 soft arcs, and k non-edges. Then there
exist k soft arcs in G whose removal gives an acyclic
digraph.

Proof. The proof generalizes the proof of Theorem 4.1.
For any non-edge {u, v} such that G has a (directed) u-v
path containing exactly one soft arc, add the arc (u,v)
to G. (It follows that (u,v) ¢ P, thus (u,v) is a soft
arc.) Do this repeatedly till there are no non-edges as
above. Let G’ be the resulting digraph. Note that each
step preserves the hypothesis that there are no directed
cycles with < 3 soft arcs, since we only add a soft arc
(u,v) if there is a u-v path containing exactly one soft
arc, hence G’ satisfies that hypothesis too. Also, note
that G’ has no more non-edges than G, so it suffices to
prove the theorem for G’.

As in Section 2, we recursively construct a ranking
of the elements by pivoting on a vertex. Pick a pivot
vertex v such that the number of induced P’s of the
form (u,v,w) is at least as big as the number of induced
Py’s of the form (v, x,y). (The existence of such a vertex
follows from a simple counting argument: the sums, over
all vertices v, of the numbers of induced P»’s of the
above two forms, both amount to the same quantity,
that is, the total number of induced Py’s in G'.)

Now let I, O and N be the set of in-neighbors, out-
neighbors and non-neighbors of v, respectively, in G'.
We recurse on the instance induced by I U N and O,
and return the ranking that has the ordered vertices in
TUN., followed by v, followed by the ordered vertices in



The only arcs that become backarcs (or are re-
moved) in this iteration are of the form (x,y) with
x € O,y € N, since there are no arcs from v to IUN by
the definition of I and N, and there are no arcs (z, 2)
with z € O,z € I, since otherwise v,z and z are in a
directed cycle with < 3 soft arcs. The choice of v now
implies that the number of non-edges with one end each
in I and O is at least as large as the number of arcs of
the form (z,y) with 2 € O,y € N, so we can charge the
deletion to the non-edges with one end each in I and O.

We claim that all arcs deleted in this step are soft
arcs. Suppose not, and let (x,y) be a hard arc with
x € O,y € N. If (v,z) is a hard arc, then by the
transitivity of P, (v,y) must also be in P. In particular,
(v,y) must be an arc of G’, contrary to the definition
of N. On the other hand, if (v,x) is a soft arc, then
(v, x,y) gives a directed path containing exactly one soft
arc, hence the step described in the first paragraph of
the proof should have added a soft arc (v,y). Again,
this contradicts the definition of N. This proves the
theorem. [ ]

Theorem 4.2 can also be generalized to the con-
strained case but with a weaker factor of 3 instead of 2.
On the positive side, factor 3 can be obtained by a com-
binatorial (primal-dual) algorithm for the constrained
(edge weighted) case. The following theorem is easy to
prove in the setting of set cover: we let each directed
cycle with < 3 soft arcs correspond to an element in
our ground set, and let each soft arc correspond to a
set that contains the cycles in which the arc appears.
Then each element belongs to at most three sets, and
the following is well known.

THEOREM 4.4. There is a  combinatorial  3-
approzimation algorithm to find a set of arcs to
cover all the directed cycles with < 3 soft arcs.

COROLLARY 4.2. There is a combinatorial  6-
approzimation algorithm for the constrained unweighted
minimum feedback arc set problem for tournaments.

As before, Theorem 4.3 can be generalized to
a weighted version, where the weights satisfy the
probability constraints. This gives an analogous 6-
approximation algorithm for the constrained weighted
version of the problem, when the weights satisfy the
probability constraints. Even though the approxima-
tion factor is worse than the factor 3 proven in Section
2, the algorithm here is a purely combinatorial algo-
rithm without any need to solve linear programs.

5 Correlation and Consensus Clustering

+ows
150 ij
for each pair 4, j € V, and sets PT, P~ we want to find a

Given a set of vertices V', nonnegative weights w.", w

clustering that has ¢ and j in the same cluster if {i,j} €
P*,and i and j in separate clusters if {i,j} € P~, that
minimizes the sum of w;; over all 4, j in different clusters
plus the sum of w;; over all 7, j in the same cluster. We
again consider two kinds of constraints on the weights:
probability constraints (w;; +w;; = 1) and the triangle
inequality (w;; +wj; > w;;, and w;; w2 wi)-

Let x;; = 1 denote that 7 and j are in the same

cluster, x;; = 0 that ¢ are j are not in the same cluster,
and let zr; =1- xj; For three vertices 1, j, k, it is

impossible that i and j are in the same cluster (z;; = 0),
j and k are in the same cluster (2}, = 0), but i and k

are not in the same cluster (z};, = 0), hence for any
feasible clustering T+ ag + xj;c > 1. The following
linear program thus gives a lower bound on the value of
an optimal clustering:

. +, - -+
min E (xijwij + xijwij)
i<j

stz + x;k + xﬁc >1 for all distinct 4, j, k
33;;‘1'%_3‘:1 for all i # j
(LPcc) :v:; =1 for all {i,j} € P+
z =1 for all {i,j} € P~
;z:;';:xjt for all i # j
m:rjvx;jzo for all i # 5

The version of this LP where PT™ U P~ is empty was
also used by Ailon et al. [2].

Given an optimal solution x to LPc¢, we form two
sets of edges £, E~ so that (V, EYUE™) is a complete
graph, E¥* N E~ = (), and {i,5} € E* only if a:f; > L.
We will adapt the algorithm from the previous section,
so that if k is chosen as pivot vertex, we put j into the
same cluster as k if {j, k} € ET and we separate j from
k if {j,k} € E~. The algorithm then recurses on all
vertices that are not put into the same cluster as k.

We call the counterpart of a triangle a “bad triplet”
([2]): atriplet (i,7, k) such that {4, j} € E*,{j,k} € E*
and {k,i} € E~. If one of the vertices of a bad triplet is
chosen as pivot, then the “opposite” pair is not clustered
according to ET U E~. Tt is easily verified that for any
triplet that is not bad, we can pick any of the vertices
as pivot, and our clustering will obey E+ and E~ for
all three pairs. Hence to make sure that our algorithm
returns a clustering that is feasible with respect to P+
and P~ it is enough to ensure that ET U E~ does not
contain any bad triplets that contain a pair in P+ or
P~

We let T, (E) = {{i,j} € ET|{j,k} € BT, {k,i} €
E~} and Ty (E) = {{i,j} € E~|{j,k} € E*,{k,i} €



E*}, ie. if we pivot on k, then T} (E) U T, (E) are
the pairs of vertices that we break up even though
they're in £7, and the pairs that we join even though
they’re in F~. In the algorithm we will choose a pivot
k that minimizes the ratio of the cost for the pairs in
T,H(E)UT, (E) in the algorithm and the cost for these
pairs in the optimal solution to (LPc¢).

In the following, for V' C V, let wy: = {w;;, w;; i €
V'jeVhay = {afagli € V,j € V'}, Ej, =
{{i,j} € EX|li € V',j € V'} and let ¢;; = aw;; +
xfwjj We give the formal statement of our algorithm,

i
CC-Pivot, in Figure 5.

Constrained-CC(V,w, P™, P7)

Let  be an opt. sol. to (LPcc) on (V,w, P*, P7).
Label the vertices in V' such that

{i,j} € Pt = label(i) = label(j) and

{i,j} € P~ = label(i) # label(j). >
Let B = {{i,j}:af, > 3} U

{{i,7}: 1:2; = £ and label(i) = label(j)}
Let B~ ={{i,j} :z;; >} U

{{i,j} : =;; = & and label(i) # label(j)}
Return CC-Pivot(V,w, ET, E~,x)

CC-Pivot(V,w, E*,E~, x)
Pick pivot £ € V minimizing
+ —
2 igyery (8 Wis T g ery (m) Wi

Z{i,j}ET,j<E>UT,;<E> Cij

C—{k}u{jeV:{jkleET}.
V' — V\C
Return C, CC-Pivot(V', wy, Ef},, E,,,, zy)

2 This can be done recursively by taking any vertex,
labeling it 0, and also giving label 0 to all vertices j such
that {i,5} € Pt. (We assume that if {4, 5}, {j, k} € P,
then {i,k} € PT.) We delete all labeled vertices, increase
our label by 1, and repeat.

Figure 2: Our algorithm for correlation and consensus
clustering.

THEOREM 5.1. Constrained-CC' is a 3 (2)-approzima-
tion algorithm for constrained correlation and consensus
clustering when the weights satisfy the probability con-
straints (triangle inequality).

Proof. We first show that the algorithm returns a
feasible clustering that obeys P* and P~ by showing
that ET U E~ does not have any bad triplets that
contain a pair in P* U P~. Suppose {i,5} € PT and
i,7 and k form a bad triplet, i.e. {i,j} € ET,{j,k} €
E* {k,i} € E-. Then x;rk > 1,z > &, but by the

triangle inequality constraints of (LPc¢) and the fact
that m;'; = 1if {i,j} € P*, we have aj; + T > 1,
or 1—x7~'k+1—x,;i > 1, so J:‘f'k = % and z.;, = %
But then label(j) = label(k) and label(k) # label(i), so
label(j) # label(i) which contradicts the properties of
our labeling, since {i,j} € PT. A similar contradiction
can be derived if we assume there is a bad triplet
containing {4,j} € P~. Hence the algorithm returns
a feasible clustering that has ¢ and j in one cluster
if {i,5} € P*, and i and j in separate clusters if
{i,j} e P~.

To bound the cost of the algorithm, we look at the
cost incurred in one call to CC-Pivot. If k is pivot, we
decide whether or not to break up into separate clusters
pairs {j, k}, and pairs {4, j} such that ¢ is clustered with
k and j is not, or both i and j are clustered with k (as
the cluster containing & is not broken down into smaller
clusters). If a cost is incurred for a pair of vertices, then
no other cost is incurred for this pair in later iterations.
As before, the cost we incur for pair {j, k} is not more
than Q(x;'kwj_k +m;kwﬁ), because we either incur a cost
of Wy, in which case a:;'k > %,
wjk, but then z7; > % Similarly, for a pair {i,7} that
is not in a bad triplet with k, either i is clustered with

or we incur a cost of

k, 7 is not clustered with k, and T > % ,or ¢ and j
are both clustered with k& and x:; > %, so the cost we

incur is accounted for by twice the contribution of {, j}
to the objective value of (LPc¢). If i and j are both
separated from k, then they are in the next recursive
call together, and no cost is incurred yet for this pair,
as it is not decided yet whether they will be clustered
together or not.

The remaining possibilities are the pairs {i,j} in
T,H(E)UT, (E). We need to show that there exists a
pivot in each iteration such that

2 >, w;<a

{i.dYeT (B) {i.d}eT, (E)

+
w”+

E Cij

{i,jYeTH (B)UT] (B)

where « is 3 and 2 in the probability constraints case
and triangle inequality case respectively. We will show
that for any feasible solution =,

> w)

>( X
{6, eTy (B)

keV (i jyeT ! (B)
>

Saz

keV (i j}eTH (B)UT, (E)

+
W, +

Let T be the set of bad triplets (4,7, k) such that
{i,j} € E*,{j,k} € ET and {k,i} € E~. For a
triplet ¢ = (i,5,k) € T, let w(t) = wj; + wj + wy,
c(t) = ¢ij + ¢jk + cki. Note that if one of the vertices
(say vertex v) of a bad triplet is chosen, then the edge



connecting the remaining two vertices is either in T, (E)
or in T, (E). Hence we get

S (X wie

keEV {ijyeTi (E)

> 2

keV {i,jyent (B)UT, (E)

> wy) =D wl),

{i.greT, (E)

Cij = Z C(t)

teT

As in the proof of Theorem 2.1, we need to show
c(t) > Lw(t). Because the analysis is similar to that in
the proof of Theorem 2.1, we omit the remainder of the
analysis for space reasons. [ ]

6 Hierarchical Clustering

An M-level hierarchical clustering of a set V' is a nested
clustering of the elements in V', where the clustering at
level ¢ is a refinement of the clustering at level ¢ + 1.
Given a set V and a matrix D with D;; € {0,..., M}
for any distinct 4,7 € V, we want to find an M-level
hierarchical clustering of V' minimizing >, .oy [Dsj —
Aij|, where A;; is the number of levels in which ¢ and
j are in different clusters, or equivalently, since the
clusterings are nested, i and j are in different clusters
at levels 1,...,);;, and in the same cluster at levels
Aij +1,..., M. Note that this is equivalent to finding
an ultrametric that minimizes the ¢; distance with D.
An ultrametric is a tree metric in which all vertices are
at the leaves of the tree, and the distance from each leaf
to the root is the same.

In addition to the input data D, we allow the input
to specify a lower bound L;;, and an upper bound Uj;
for each pair of vertices i,j. Any feasible hierarchical
clustering should have ¢ and j in different clusters
at levels 1,...,L;;, and in the same cluster at levels
Uij+1,...,M. If we look at hierarchical clustering as
fitting an ultrametric, then the constraints specify that
the distance between a pair is at least L;; and at most
Uij. The constraints have to be consistent, i.e. for any
pair 7,j we must have L;; < Uy; and for any k # 4,7,
Lij S maX{Uik, U]k}

We now observe that this problem is closely related
to the correlation clustering problem. Let

1
dfj{o

Let xfj = 1if ¢ and j are in separate clusters at level

if Dj; > ¢
otherwise.

¢, and J;fj = 0 otherwise. We give below an integer
programming formulation (HC') for the problem. The
linear programming relaxation of (HC') was used by
Ailon and Charikar [1] to give an O(logn loglogn)!/P-
approximation algorithm for fitting ultrametrics and
tree metrics to general dissimilarity data (i.e. mnot

necessarily in {0,...,M}) under the L,-norm. We
will denote by LPgc the LP relaxation of the integer
program (HC). The integer program essentially solves
a correlation clustering problem at each level £ subject
to the constraint that the clustering at level ¢ — 1
is a refinement of that at level ¢. The variables xfj
give a correlation clustering at level ¢ with objective
function weight w;; = 0and w; = 1if D;; > ¢, and
weight w;’; = 1 and w;; = 0 if D;; < {, and with
Pt = {{i,j} : € > Uy, P = {{i,j} : £ < Lijh
without the consistency constraints the integer program
reduces to M copies of the correlation clustering integer

program of the previous section.

minz i <(1 — dfj)xfj + dfj(l — xfj))

i<j (=1

s.t. xfj + asfk > xfk V distinct 4,5, k,V0=1,..., M
(HC) wg; <apy! Vi#j,V=2,....M
at =1 Vi # 4,0 < Ly
al =0 Vi # 3,V > U,
xf; €{0,1} Vit jl=1,...,M

For each level we form two disjoint sets of edges
E+t E—%so that (V, EY*U E~Y) is a complete graph
and {i,j} € E; only if zf; > §, and {i,j} € E** only
if xfj < 1. We will use a slightly altered version of
CC-Pivot to generate a clustering at level M, and then
recursively call the algorithm to generate an (M — 1)-
level hierarchical clustering for each cluster found.

To find a clustering of V' at level M, we pick a
pivot k and we put j into the same cluster as k if
{j,k} € ETM and we separate j from k if {j, k} €
E—M_ Next we recurse on all vertices that are not in
the same cluster as k. Once we have found a clustering
Cuyr of V., we recurse on each cluster C' € Cy; to find
an (M — 1)-level subclustering, this time using £+ ~1
and E~"M~1 to decide whether a vertex j is clustered
together with pivot vertex k or not.

Similar to before, we let T,/ (EM) = {{i,j} €
EtM|{jk} € EVM {k,i} € E-M} and T, (EM) =
{{i,j} € E-M|{j,k} € E*M {k,i} € ETM}. When
k is chosen as pivot, then the pairs in T;(EM) and
T, (EM) are the pairs that we do not cluster as sug-
gested by rounding the LP variables. In the algo-
rithm we will choose a pivot k that minimizes the ra-
tio of the cost for the pairs in 7,7 (EM) U T, (EM) in
the algorithm compared to the “budget” we have for
these pairs, i.e. the cost for these pairs in the opti-
mal solution to (LPg¢). In the following, let cfj =

(1 —df;)af; + di;(1 —xf;). Let D = {Dyli,j € V} and



for V! C V, let Dy, = {Dyj|i,j € V'}. We define E;;
and E;,’g in a similar fashion. Similarly, we define z to
contain x;; for all pairs {i,j} in V, and @y~ is this set
restricted to pairs in V’. Our algorithm, Hierarchical-
Clustering, is given in Figure 3.

Hierarchical-Clustering(V, D, M, L,U)

Let = be an opt. sol. to (LPu¢) on (V,D,M,L,U).
For {=1to M
Label the vertices in V' such that
0> Ui; = label®(i) = label®(j) and
(< Li; = zabel"( ) # label® ().
Let B+ = {{i,j} : oty < 1} U
{{i,5} : 2f; = & and label’ (i) =
Let E—“ = {{i,j} :2f; > 3} U
{{i,5} : =i, = L and label’ (i) # label’ (j)}

label*(5)}

(Generate clusterings C1, . . .

a refinement of Co41)
Cy = HC-Pivot(V, D, z, ET™ E—M M)
For £ = M — 1 down to 1

Ce=10

for C € Coy1

C¢ — {C¢, HC-Pivot(C, D¢, xc, BT,

return {Cy,...,Cn}.

,Car such that Cy is

E~* 0}

HC-Pivot(V,D,z, EY,E~, M)
Pick pivot k € V minimizing
M
Ypert e 2o (L= d5) + X yere ) G

i grer(m) Yol ¢+ Xiigyery ) i

M

C—{kyu{jeV:{jklecET}
V' — V\C

Return {C, HC-Pivot(V’, Dy+,zv/, EY,, E5,, M)}.

v By

Figure 3:
clustering.

Our algorithm for finding a hierarchical

THEOREM 6.1. Hierarchical-clustering is an (M + 2)-
approzimation algorithm for M -level hierarchical clus-
tering.

Proof. Let PT* = {{i,j} : £ > Uy}, P~ = {{i,j} :
¢ < Li;}. By the proof of Theorem 5.1, E*+* and E—+*
do not contain any bad triplets that contain a pair in
P+t P~*. Hence our algorithm does not separate i, j
at level £ € {U;; +1,...,M} since {i,j} € P** for
¢ > Uj;j. On the other hand, if 4,j are not separated
already at some level ¢ > L;;, then the fact that
{i,j} € P~ L ensures that i and j will be separated
at level L;; (and thus for all levels ¢ < L;;). Hence
the algorithm returns a feasible solution. To bound the
cost of the algorithm, we will bound the cost incurred

in a call to HC-Pivot in terms of the value of the LP
solution.

In a call to HC-Pivot at level ¢ with vertex set
V' where k is pivot, we make the decision for each
j € V' whether to cluster {j, k} together (at level ¢) or
separating them (at all levels 1,..., ), plus we cluster 4
and j together at level ¢ if they are both clustered with
k, and we separate i, j for all levels 1, ..., ¢ if only one
of them is clustered with k.

If a pair is clustered together, the cost incurred is
dfj. If the pair is in B¢ then xf, < L, and hence

iy = 2
cfj > 1de, . pays for at least half the cost. If

a pair is separated, the cost is Ze/ (1 —d ;). If the
5, and by the 001151stency

constraints of (HCLp) , x” > xé for each ¢’ < /¢, hence

Zg, 1€ P> 1 ZZ, (1= ) S0 Ze/ 10” pays half the
cost of beparatmg i and j at levels 1,..., 4.

The remaining pairs for which we have not charged
the cost yet are (1) the pairs {i,j} that are both
clustered with k, but that are not in E** and (2)
the pairs {i,j} for which 7 is clustered with k and j
is separated from k, that are not in ‘. Note that
these are exactly the pairs in 7, (E*) and T, (E*). For

the pairs in 7}, (E*) we incur a cost of df], and for the

é/
—d;;).

SOC

. . . 7,[ £
pair is in £~ then z;; 2

pairs in 7, (EY) we incur a cost Zz':1(

CLAM 6.1. Let © be a feasible solution to (HCpLp).

Let EY E~ be a partition of E = V x V such that
{i,j} € ET only if :17]\]4 < % and {i,j} € E~ only if
x> 1. Then
M
(X Xo-d > )

kEV (i jyeT)(E) =1 {i.j}eT, (B)

< (M+2)Z( > icl%‘l* > cﬁgf)

kev (i jyert(B) (=1 {i,j}eT; (B)

It follows from the claim that in each call to HC-Pivot,
say at level £, we can choose a pivot k such that the cost
for the pairs in 7} (E) UT}, (E) can be charged against
(¢ + 2) times the LP contribution of the variables
corresponding to the decisions made for these pairs.
So we have shown that cfj is charged either at most
twice, or at most £+ 2 times for each £ = 1,..., M. We
conclude that the total cost of the algorithm is at most
(M+2)Y, %, ¢ = (M +2)OPT.

Proof of Claim 6.1. We define

2.«

{i.d}eTf ()

M
d,

M
—dij) +

2

{igrer, (E)



{i.5}eT; (B)
By = > et
{1, YT (B)UT,, (E)
B = >, <

{i.5}eT; (E)

Let (i,7,k) be a bad triplet if {i,5} € E*, {j,k} €
Et {k,i} € E~, and let T be the set of all bad triplets
For a bad triplet t = (i, 5, k), let ¢M (t) = +cjk +cM,
and let dM(t) = 1—d} +1— d T+ dM Note that if one
of the vertices (say VerteX v) of a bad triplet is chosen,

then the edge connecting the remaining two vertices is
either in T (E) or in T, (E). Hence we get

S A - wa YR Y
keV teT kev teT

Now, note that if we let x; = 2M 2} = 1 — 2M]

and let w; = dM, w} = 1 — dM, then we see that

T (E), T (E) and T correspond exactly to how we
defined them in the simple clustering case, and that
cM(t) and dM(t) are exactly the same as c(t) and w(t).
Since the weights satisfy w) + w_, = 1, we have from
the proof of Theorem 5.1 that w( ) < 3c(t). It follows
that d™(t) < 3¢™(t) and hence

S Ay <sy By
keV keV
Next we will show that

S A<D BY +4) By

keV keVv keV

(6.1)

It then follows that

(Y So-d

keV {ijrert(B) =1

>

{i.d}eT, (E)

M
a)

IN

BY +4> ZB +3Y BY

keV (=1 keVv

(%;BH;B )
)

M
= (M+2) ( Zcfj +
keV {,7]}€T+(E)€ 1

IA
§

> @)

(i} (E)

To prove (6.1), note that in ), Z{i’j}eT;(E)(lfdfj),
(1- dfj) is counted once for every bad triplet (i, 7, k)

v (k,i,7). For bad triplet ¢t = (i,j,k) € T, let
dﬂ( )=(1- ) (1-— dfk), and let ¢/ (t) = cfj + cfk.
Then

A=) di(t), and Y Bi=> (1)

kev teT keV teT

Thus we can prove (6.1) by showing that df(t) <
4cf (t) + ¢M(t). This is trivially true in the case that
d’.(t) = 0, so we consider the two cases d* (t) = 1 and
d(t) = 2. If df(t) = 1, note that either df; or df,
is 0. Suppose without loss of generality that dfj = 0.
Then by the definition of dfj, D;; < 4. Since £ < M,
this implies that d%f =0 also. So dM(t) >1— df\]/[ > 1.
Going back to the proof of Theorem 5.1, we know that
either ¢ (t) > d™(t) or ¢™(t) > 1. Hence d™(t) > 1
implies that ¢™ () > 1, hence de (1) < cM(t).

If df (t) = 2, then ¢!, (t) = af —|—x]k By the triangle
inequality constraints in (LPHC), zl —|—xj > xt,. From
the fact that (i,7,k) is a bad triplet, we know that

oM > 12 Additionally, by the refinement constraints
of (LPyc), xf; > xi, so we get that ¢/ (t) > %, and
hence df (t) < 4c(t). [ |
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